Integration on Jordan algebras
Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author gives a onassociative generalization of abstract integration on JBW-algebras – Jordan Banach algebras having a predual space. Using a faithful normal finite trace on a JBW-algebra $A$, a opology of convergence in measure is introduced and the Jordan algebra $\widehat A$ of all measurable elements with respect to $A$ is constructed as the completion of $A$ in this topology. The spaces $L_1$ and $L_2$ are introduced for $A$ and it is shown that they can be considered as the spaces of all integrable and square-integrable elements, respectively, of $\widehat A$. As in the case of von Neumann algebras it is proved that $L_1$ is isometrically isomorphic to the Banach space predual to $A$. Bibliography: 33 titles.
@article{IM2_1984_22_1_a0,
     author = {Sh. A. Ayupov},
     title = {Integration on {Jordan} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1--21},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a0/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
TI  - Integration on Jordan algebras
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 1
EP  - 21
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a0/
LA  - en
ID  - IM2_1984_22_1_a0
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%T Integration on Jordan algebras
%J Izvestiya. Mathematics 
%D 1984
%P 1-21
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a0/
%G en
%F IM2_1984_22_1_a0
Sh. A. Ayupov. Integration on Jordan algebras. Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a0/

[1] Segal I. E., “A non commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl

[2] Stinespring W. F., “Integration theorems for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90 (1959), 15–56 | DOI | MR | Zbl

[3] Dixmier J., “Formes lineaires sur un anneau d'operateurs”, Bull. Soc. Math. France, 81 (1953), 9–39 | MR | Zbl

[4] Ogasawara T., Yoshinaga K., “A non commutative theory of integration for operators”, J. Sci. Hiroshima, 18 (1955), 311–347 | MR | Zbl

[5] Yeadon F. J., “Convergence of measurable operators”, Proc. Cambridge Philos. Soc., 74 (1973), 257–268 | DOI | MR | Zbl

[6] Yeadon F. J., “Non commutative $L_p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 91–102 | DOI | MR | Zbl

[7] Nelson E., “Notes on non commutative integration”, J. of Funct. Analysis, 15:2 (1974), 103–116 | DOI | MR | Zbl

[8] Alfsen E. M., Shultz F. W., Stormer E., “Gelfand–Neumark theorem for Jordan algebras”, Advances in Math., 28:1 (1978), 11–56 | DOI | MR | Zbl

[9] Shultz F. W., “On normed Jordan algebras which are Banach dual spaces”, J. of Funct. Analysis, 31:3 (1979), 360–376 | DOI | MR | Zbl

[10] Topping D., “Jordan algebras of self-adjoint operators”, Mem. Amer. Math. Soc., 53 (1965), 1–48 | MR

[11] Stormer E., “Jordan algebras of type, I”, Acta Math., 115 (1966), 165–184 | DOI | MR

[12] Stormer E., “Irreducible Jordan algebras of self-adjoint operators”, Trans. Amer. Math. Soc., 130 (1968), 153–166 | DOI | MR

[13] Antonovskii M. Ya., Boltyanskii V. G., Sarymsakov T. A., Topologicheskie algebry Bulya, AN UzSSR, Tashkent, 1963

[14] Sarymsakov T. A., Topologicheskie polupolya i teoriya veroyatnostei, Fan, Tashkent, 1969 | MR | Zbl

[15] Sarymsakov T. A., “Semifields and probability theory”, Proc. Third USSR–Japan Sympos. Probability Theory (Tashkent, 1975), Lecture Notes in Math., 550, 1976, 524–549 | MR | Zbl

[16] Ayupov Sh. A., “K teorii chastichno uporyadochennykh iordanovykh algebr”, Dokl. AN UzSSR, 1979, no. 8, 6–8 | MR | Zbl

[17] Ayupov Sh. A., “Spektralnaya teorema dlya $OJ$-algebr”, Dokl. AN UzSSR, 1979, no. 9, 3–5 | MR

[18] Sarymsakov T. A., Ayupov Sh. A., “Chastichno uporyadochennye iordanovy algebry”, Dokl. AN SSSR, 249:4 (1979), 789–792 | MR | Zbl

[19] Ayupov Sh. A., “Topologicheskie chastichno uporyadochennye iordanovy algebry”, Mezhdunarodnaya Topologicheskaya konferentsiya, Moskva, 1979, Uspekhi matem. nauk, 35:3(213) (1980), 138–140 | MR | Zbl

[20] Ayupov Sh. A., “$OJ$-algebry ogranichennykh elementov”, Izv. AN UzSSR, seriya fiz.-matem. nauk, 1980, no. 2, 3–8 | MR

[21] Jacobson N., Structure and Representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[22] Zhevlakov K. A., Slinko A. M., Shestakov A. P., Shirshov A. N., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[23] Alfsen E. M., Shuttz F. W., “State space of Jordan algebras”, Acta Math., 140:3,4 (1978), 155–190 | DOI | MR | Zbl

[24] Burbaki N., Obschaya topologiya (Topologicheskie gruppy, chisla), Nauka, M., 1969 | MR

[25] Sarymsakov T. A., Rubshtein B. A., Chilin V. I., “Polnye tenzornye proizvedeniya topologicheskikh polupolei”, Dokl. AN SSSR, 216:6 (1974), 1226–1228 | MR | Zbl

[26] Ayupov Sh. A., Khadzhiev D., “Topologiya v $K$-prostranstvakh s edinitsei”, Dokl. AN UzSSR, 1975, no. 1, 3–4 | Zbl

[27] Muratov M. A., “Skhodimost v koltse izmerimykh operatorov”, Funkts. analiz, Trudy TashGU, 573, Tashkent, 1978, 51–58 | MR

[28] Berberian S. K., “The regular ring of a finite $AW^*$-algebra”, Ann. of Math., 65:2 (1957), 224–240 | DOI | MR | Zbl

[29] Saito K., “On the algebra of measurable operators for a general $AW^*$-algebra”, Tohoku Math. J., 21 (1969), 249–270 | DOI | MR | Zbl

[30] Ayupov Sh. A., “Modulyarnye iordanovy algebry samosopryazhennykh operatorov”, TMF, 53:1 (1982), 77–82 | MR | Zbl

[31] Sarymsakov T. A., Goldshtein M. Sh., “O chastichno uporyadochennykh involyutivnykh algebrakh”, Dokl. AN SSSR, 228:2 (1976), 386–389 | MR

[32] Chilin V. I., “Topologicheskie $O^*$-algebry, I”, Izv. AN UzSSR, seriya fiz.-matem. nauk, 1979, no. 3, 27–34 | MR | Zbl

[33] Sarymsakov T. A., Nasirov S. N., Khadzhiev D., “Opisanie idealov odnogo klassa kolets”, Dokl. AN SSSR, 225:5 (1975), 1018–1019 | MR | Zbl