Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1983_21_3_a5, author = {Yu. M. Sukhov}, title = {Convergence to an equilibrium state for a~one-dimensional quantum system of hard rods}, journal = {Izvestiya. Mathematics }, pages = {547--583}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {1983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a5/} }
Yu. M. Sukhov. Convergence to an equilibrium state for a~one-dimensional quantum system of hard rods. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 547-583. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a5/
[1] Dubin D. A., Solvable models in algebraic statistical mechanics, Clarendon Press, 1974
[2] Emch G. G., Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, 1972 ; Emkh G. G., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl
[3] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics. 1, Springer-Verlag, 1979 ; Brattelli O., Robinson D., Mir, M., 1982 ; 2, Springer-Verlag, 1981 | MR | Zbl | MR
[4] Dobrushin R. L., Sukhov Yu. M., “Vremennaya asimptotika dlya nekotorykh vyrozhdennykh modelei evolyutsii sistem s beskonechnym chislom chastits”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 14, VINITI AN SSSR, M., 1979, 147–254 | MR
[5] Boldrighini C., Dobrushin R. L., Suhov Yu. M., Time asymptotics for some degenerate models of the evolution of systems with infinitely many particles, preprint, Camerino University (Italy), 1980
[6] Rocca F., Sirugue M., Testard D., “On a class of equilibrium states under the Kubo–Martin–Schwinger condition. I. Fermions”, Comm. Math. Phys., 13 (1969), 317–334 | DOI | MR
[7] Rocca F., Sirugue M., Testard D., “On a class of equilibrium states under the Kubo–Martin–Schwinger condition. II. Bosons”, Comm. Math. Phys., 19 (1970), 119–141 | DOI | MR
[8] Lanford O. E., Robinson D. W., “Approach to equilibrium of free quantum systems”, Commun. Math. Phys., 24 (1972), 193–210 | DOI | MR
[9] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei, Nauka, M., 1972 | MR
[10] Ruelle D., Statistical Mechanics. Rigorous results, W. A. Benjamen, 1969 ; Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1972 | MR | Zbl
[11] Matthes K., Kerstan J., Mecke J., Infinitely divisible point processes, Wiley and Sons, N. Y., 1978 ; Mattes K., Kerstan I., Meke I., Bezgranichno delimye tochechnye protsessy, Nauka, M., 1981 | MR | Zbl
[12] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR
[13] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[14] Malyshev V. A., “Klasternye razlozheniya v reshetchatykh modelyakh statisticheskoi fiziki i kvantovoi teorii polya”, Uspekhi matem. nauk, 35:2 (1980), 3–53 | MR
[15] Ginibre J., “Reduced density matrices of quantum gases. I”, J. Math. Phys., 6 (1965), 238–251 ; Zhinibr Zh., “Predelnye matritsy plotnosti kvantovykh gazov”, Matematika, 12:4 (1968), 104–130; “II”, J. Math. Phys., 6 (1965), 252–262 ; “III”, J. Math. Phys., 6 (1965), 1432–1446 | DOI | MR | Zbl | DOI | DOI
[16] Ginibre J., “Some applications of functional integration in statistical mechanics”, Statistical Mechanics and Quantum Field Theory (Les Houches Summer Schoof of Theoretical Physics), Gordon and Breach, 1970
[17] Novikov I. D., “Sostoyaniya Gibbsa v kvantovoi statisticheskoi fizike”, Funkts. analiz i ego prilozh., 4 (1970), 79–80
[18] Sukhov Yu. M., “Predelnye matritsy plotnosti dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, Matem. sb., 83 (1970), 491–512 | Zbl
[19] Sukhov Yu. M., “Regulyarnost predelnykh matrits plotnosti dlya odnomernykh nepreryvnykh kvantovykh sistem”, Trudy Mosk. matem. o-va, 26 (1972), 151–179 | Zbl
[20] Sukhov Yu. M., “Suschestvovanie i regulyarnost predelnogo sostoyaniya Gibbsa dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, Dokl. AN SSSR, 195:5 (1970), 1042–1044
[21] Suhov Yu. M., “Sur les systèmes continus de la Méchanique statistique quantique a une dimension avec une intéraction de portée infinie”, Compt. Rend. A. S. Paris (A279), 1974, 433–434 | MR
[22] Suhov Yu. M., “Limit Gibbs states for some classes of one dimensional systems of quantum statistical mechanics”, Commun. Math. Phys., 62 (1978), 119–136 | DOI | MR
[23] Dashyan Yu. R., “Ekvivalentnost malogo i bolshogo kanonicheskikh ansamblei Gibbsa dlya odnomernykh sistem kvantovoi statisticheskoi mekhaniki”, Teor. i matem. fizika, 34:3 (1978), 341–352 | MR