Extremality of monosplines of minimal deficiency
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 461-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M_{wN}^r(A,B)$ be the set of monosplines $$ M(x)=\int_0^1w(t)(x-t)_+^{r-1}\,dt-\sum_{i=1}^n\sum_{j\in\Gamma_i}a_{ij}(x-x_i)_+^{r-1-j}-\sum_{k=0}^{r-1}b_kx^k $$ that satisfy $$ M^{(i)}(0)=0\quad(i\in A),\qquad M^{(j)}(1)= 0\quad(j\in B),\qquad\sum_{i=1}^n|\Gamma_i|\leqslant N, $$ where $A,B$ and $\Gamma_i$ are subsets of $Z_r=\{0,1,\dots,r-1\}$, $|\Gamma_i|$ is the number of elements in $\Gamma_i$, $M_{wN}^{r0}(A,B)$ is the subset of elements of $M_{wN}^r(A,B)$ for which $n=N$, $\Gamma_i=\{0\}$ ($i=1,\dots,N$), and $\widetilde M_{wN}^r(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$ are the corresponding sets of periodic monosplines. It was shown that the monosplines that have the smallest $L_p$-norms in $M_{wN}^r(A, B)$ and $\widetilde M_{wN}^r(A,B)$ belong to $M_{wN}^{r0}(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$, respectively. Some theorems are also obtained on snakes for monosplines. Bibliography: 37 titles.
@article{IM2_1983_21_3_a3,
     author = {A. A. Zhensykbaev},
     title = {Extremality of monosplines of minimal deficiency},
     journal = {Izvestiya. Mathematics },
     pages = {461--482},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Extremality of monosplines of minimal deficiency
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 461
EP  - 482
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/
LA  - en
ID  - IM2_1983_21_3_a3
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Extremality of monosplines of minimal deficiency
%J Izvestiya. Mathematics 
%D 1983
%P 461-482
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/
%G en
%F IM2_1983_21_3_a3
A. A. Zhensykbaev. Extremality of monosplines of minimal deficiency. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 461-482. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/

[1] Zhensykbaev A. A., “Monosplainy minimalnoi normy i nailuchshie kvadraturnye formuly”, Uspekhi matem. nauk, 36:4(220) (1981), 107–159 | MR | Zbl

[2] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Kand. dissertatsiya, MGU, Moskva, 1965

[3] Bakhvalov N. S., “Ob optimalnosti lineinykh metodov priblizheniya operatorov na vypuklykh klassakh funktsii”, ZhVM i MF, 1971, no. 4, 1014–1018 | Zbl

[4] Nikolskii S. M., “K voprosu ob otsenke priblizhenii kvadraturnymi formulami”, Uspekhi matem. nauk, 5:2(36) (1950), 165–177 | MR

[5] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[6] Korneichuk N. P., Lushpai N. E., “Nailuchshie kvadraturnye formuly dlya klassov differentsiruemykh funktsii i kusochno-polinomialnoe priblizhenie”, Izv. AN SSSR. Seriya matem., 33:6 (1969), 1416–1437

[7] Zhensykbaev A. A., “Kharakteristicheskie svoistva nailuchshikh kvadraturnykh formul”, Sib. matem. zhurnal, 20:1 (1979), 49–68 | MR | Zbl

[8] Zhensykbaev A. A., “Monosplainy i nailuchshie kvadraturnye formuly dlya nekotorykh klassov neperiodicheskikh funktsii”, Anal. Math., 5:4 (1979), 301–331 | DOI | MR | Zbl

[9] Zhensykbaev A. A., “Monosplainy, naimenee uklonyayuschiesya ot nulya, i nailuchshie kvadraturnye formuly”, Dokl. AN SSSR, 249:2 (1979), 278–281 | MR | Zbl

[10] Zhensykbaev A. A., “O nailuchshei kvadraturnoi formule na klasse $W^rL_p$”, Dokl. AN SSSR, 227:2 (1976), 277–279 | MR | Zbl

[11] Zhensykbaev A. A., “Nailuchshaya kvadraturnaya formula dlya nekotorykh klassov periodicheskikh diffenrentsiruemykh funktsii”, Izv. AN SSSR. Seriya matem., 41:5 (1977), 1110–1124 | MR | Zbl

[12] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{k=1}^np_kf(x_k)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Seriya matem., 38:3 (1974), 583–614 | MR | Zbl

[13] Ligun A. A., “Tochnye neravenstva dlya splain-funktsii i nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Matem. zametki, 19:6 (1976), 913–926 | MR

[14] Johnson R. S., “On monosplines of least deviation”, Trans. Amer. Math. Soc., 96 (1960), 458–477 | DOI | MR | Zbl

[15] Ligun A. A., “O nailuchshikh kvadraturnykh formulakh dlya nekotorykh klassov periodicheskikh funktsii”, Matem. zametki, 24:5 (1978), 661–669 | MR | Zbl

[16] Zhensykbaev A. A., “O nailuchshikh kvadraturnykh formulakh dlya nekotorykh klassov neperiodicheskikh funktsii”, Dokl. AN SSSR, 236:3 (1977), 531–534 | MR | Zbl

[17] Zhensykbaev A. A., “Splain-funktsii i nailuchshie kvadraturnye formuly”, Trudy mezhdunarodnoi konferentsii po konstruktivnoi teorii funktsii (Blagoevgrad, 30.05–04.06. 1977), Sofiya, 1980, 65–72 | Zbl

[18] Boyanov B. D., “Kharakteristika i suschestvovanie optimalnykh kvadraturnykh formul dlya odnogo klassa differentsiruemykh funktsii”, Dokl. AN SSSR, 232:6 (1977), 1233–1236 | MR | Zbl

[19] Korneichuk N. P., “Nailuchshie kubaturnye formuly dlya nekotorykh klassov funktsii mnogikh peremennykh”, Matem. zametki, 3:5 (1968), 565–576

[20] Lushpai N. E., “Nailuchshie kvadraturnye formuly na klassakh differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 6:4 (1969), 475–481 | MR | Zbl

[21] Lushpai N. E., “Ob odnoi optimalnoi kvadrature dlya klassa differentsiruemykh periodicheskikh funktsii”, Izv. vuzov, matem., 1973, no. 4(131), 55–63 | MR | Zbl

[22] Malozemov V. N., Pevnyi A. V., “O nailuchshei kvadraturnoi formule na klasse $W_1^{r+1}$”, Dokl. AN SSSR, 252:1 (1980), 37–40 | MR | Zbl

[23] Barrar R. B., Loeb H., “On a nonlinear characterization problem for monosplines”, J. Approx. theory, 18 (1978), 220–240 | DOI | MR

[24] Barrar R. B., Loeb H., “On monosplines with odd multiplicity of least norm”, J. d'analyse math., 33 (1978), 12–38 | DOI | MR | Zbl

[25] Boyanov B. D., “Uniqueness of the monosplines of least deviation”, Numerische integration, ISNM, 45, Basel, 1979, 67–97 | MR

[26] Boyanov B. D., “Uniqueness of the optimal nodes of quadrature formulae”, Math. Comp., 36:134 (1981), 525–546 | DOI | MR

[27] Schoenberg I. J., “Spline functions, convex curves and mechanical quadrature”, Bull. Amer. Math. Soc., 64 (1958), 352–357 | DOI | MR | Zbl

[28] Karlin S., Micchelli C., “The fundamental theorem of algebra for monosplines satisfying boundary conditions”, Isr. J. Math., 11 (1972), 405–451 | DOI | MR | Zbl

[29] Karlin S., Schumaker L., “The fundamental theorem of algebra for tchebycheffian monosplines”, J. Anal. Math., 20 (1967), 223–270 | MR

[30] Melkman A. A., “Splines with maximal zero sets”, J. Math. Anal. and Appl., 61:3 (1977), 739–751 | DOI | MR | Zbl

[31] Micchelli C., “The fundamental theorem of algebra for monosplines with multiplicities”, Linear operators and approximation, INSM, 20, Basel–Stuttgart Birkhauserv, 1972, 419–430 | MR

[32] Zhensykbaev A. A., “O nulyakh periodicheskikh monosplainov” (Alma-Ata), Differentsialnye uravneniya i ikh prilozheniya, 1980, 18–24 | MR

[33] Zhensykbaev A. A., Motornyi V. P., “Analog osnovnoi teoremy algebry dlya periodicheskikh monosplainov i ego prilozheniya”, Issled. po sovr. problemam summir. i priblizheniya funktsii i ikh prilozheniyam, Dnepropetrovsk, 1979, 135–137 | Zbl

[34] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[35] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[36] Karlin S., “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–618 | MR

[37] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl