Extremality of monosplines of minimal deficiency
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 461-482

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M_{wN}^r(A,B)$ be the set of monosplines $$ M(x)=\int_0^1w(t)(x-t)_+^{r-1}\,dt-\sum_{i=1}^n\sum_{j\in\Gamma_i}a_{ij}(x-x_i)_+^{r-1-j}-\sum_{k=0}^{r-1}b_kx^k $$ that satisfy $$ M^{(i)}(0)=0\quad(i\in A),\qquad M^{(j)}(1)= 0\quad(j\in B),\qquad\sum_{i=1}^n|\Gamma_i|\leqslant N, $$ where $A,B$ and $\Gamma_i$ are subsets of $Z_r=\{0,1,\dots,r-1\}$, $|\Gamma_i|$ is the number of elements in $\Gamma_i$, $M_{wN}^{r0}(A,B)$ is the subset of elements of $M_{wN}^r(A,B)$ for which $n=N$, $\Gamma_i=\{0\}$ ($i=1,\dots,N$), and $\widetilde M_{wN}^r(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$ are the corresponding sets of periodic monosplines. It was shown that the monosplines that have the smallest $L_p$-norms in $M_{wN}^r(A, B)$ and $\widetilde M_{wN}^r(A,B)$ belong to $M_{wN}^{r0}(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$, respectively. Some theorems are also obtained on snakes for monosplines. Bibliography: 37 titles.
@article{IM2_1983_21_3_a3,
     author = {A. A. Zhensykbaev},
     title = {Extremality of monosplines of minimal deficiency},
     journal = {Izvestiya. Mathematics },
     pages = {461--482},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Extremality of monosplines of minimal deficiency
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 461
EP  - 482
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/
LA  - en
ID  - IM2_1983_21_3_a3
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Extremality of monosplines of minimal deficiency
%J Izvestiya. Mathematics 
%D 1983
%P 461-482
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/
%G en
%F IM2_1983_21_3_a3
A. A. Zhensykbaev. Extremality of monosplines of minimal deficiency. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 461-482. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a3/