Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1983_21_3_a2, author = {N. P. Gushel'}, title = {On {Fano} varieties of genus 6}, journal = {Izvestiya. Mathematics }, pages = {445--459}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {1983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/} }
N. P. Gushel'. On Fano varieties of genus 6. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/
[1] Grothendieck A., “Technique de constructions et théoremes d'existence en géométrie algébrique. IV”, Séminaire Bourbaki, 1960/61, 13, no. 221
[2] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12, VINITI, 1979, 59–158 | MR
[3] Ionescu P., An enumeration of all smoth projective varieties of degree 5 and 6, pr. series, No 70, Inst. Nat. pentru criatie stintifica si technica inst. de mat., Bucuresti, 1980
[4] Kleiman L., “Geometry on grassmanians and applications to splitting bundles and smoothing cycles”, IHES Publ. Math., 36 (1969), 281–297 | MR | Zbl
[5] Lvovskii S. M., “Ogranichennost stepeni trekhmernykh mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1288–1331 | MR
[6] Maruyama M., “On a family of algebraic vector bundles”, Kinokunia Tokyo, 1973, 95–146 | MR | Zbl
[7] Papantonopoulou A., “Curves in Grassman variety”, Nagoya Math. J., 66 (1977), 121–137 | MR | Zbl
[8] Reid M., Lines on Fano 3-folds according to Shokurov, report No 11, Inst. Mitag-Leffler, 1980, 1–41
[9] Saint-Donat B., “Projective models ot $K3$ surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl
[10] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 922–964 | MR | Zbl
[11] Tango H., “On $(n-1)$-dimensional projective spaces contaned in the Grassmann variety Gr $(1, n)$”, J. Math. Kyoto Univ., 14:3 (1974), 415–460 | MR | Zbl
[12] Todd J. A., “The locus representing the lines of four-dimensional space and its applications to lenear complexes in four dimensions”, Proc. London Math. Soc., 30:2 (1930), 513–550 | DOI | Zbl
[13] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl