On Fano varieties of genus 6
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 445-459

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that any nonsingular Fano variety $V_{10}$ of genus $6$ in $\mathbf P^7$ with $\operatorname{Pic}V_{10}\simeq\mathbf ZK_V$ is either a section $V_{10}^3$ of the Grassmannian $G(1,4)$ of lines in $\mathbf P^4$ by two hyperplanes and a quadric under the Plücker embedding of $G(1,4)$ in $\mathbf P^9$ or is the intersection ${V_{10}^3}'$ of a quadric and a cone over a section of $G(1,4)$ by a subspace of codimension $3$. Bibliography: 13 titles.
@article{IM2_1983_21_3_a2,
     author = {N. P. Gushel'},
     title = {On {Fano} varieties of genus 6},
     journal = {Izvestiya. Mathematics },
     pages = {445--459},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/}
}
TY  - JOUR
AU  - N. P. Gushel'
TI  - On Fano varieties of genus 6
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 445
EP  - 459
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/
LA  - en
ID  - IM2_1983_21_3_a2
ER  - 
%0 Journal Article
%A N. P. Gushel'
%T On Fano varieties of genus 6
%J Izvestiya. Mathematics 
%D 1983
%P 445-459
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/
%G en
%F IM2_1983_21_3_a2
N. P. Gushel'. On Fano varieties of genus 6. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/