On Fano varieties of genus 6
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 445-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that any nonsingular Fano variety $V_{10}$ of genus $6$ in $\mathbf P^7$ with $\operatorname{Pic}V_{10}\simeq\mathbf ZK_V$ is either a section $V_{10}^3$ of the Grassmannian $G(1,4)$ of lines in $\mathbf P^4$ by two hyperplanes and a quadric under the Plücker embedding of $G(1,4)$ in $\mathbf P^9$ or is the intersection ${V_{10}^3}'$ of a quadric and a cone over a section of $G(1,4)$ by a subspace of codimension $3$. Bibliography: 13 titles.
@article{IM2_1983_21_3_a2,
     author = {N. P. Gushel'},
     title = {On {Fano} varieties of genus 6},
     journal = {Izvestiya. Mathematics },
     pages = {445--459},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/}
}
TY  - JOUR
AU  - N. P. Gushel'
TI  - On Fano varieties of genus 6
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 445
EP  - 459
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/
LA  - en
ID  - IM2_1983_21_3_a2
ER  - 
%0 Journal Article
%A N. P. Gushel'
%T On Fano varieties of genus 6
%J Izvestiya. Mathematics 
%D 1983
%P 445-459
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/
%G en
%F IM2_1983_21_3_a2
N. P. Gushel'. On Fano varieties of genus 6. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a2/

[1] Grothendieck A., “Technique de constructions et théoremes d'existence en géométrie algébrique. IV”, Séminaire Bourbaki, 1960/61, 13, no. 221

[2] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12, VINITI, 1979, 59–158 | MR

[3] Ionescu P., An enumeration of all smoth projective varieties of degree 5 and 6, pr. series, No 70, Inst. Nat. pentru criatie stintifica si technica inst. de mat., Bucuresti, 1980

[4] Kleiman L., “Geometry on grassmanians and applications to splitting bundles and smoothing cycles”, IHES Publ. Math., 36 (1969), 281–297 | MR | Zbl

[5] Lvovskii S. M., “Ogranichennost stepeni trekhmernykh mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1288–1331 | MR

[6] Maruyama M., “On a family of algebraic vector bundles”, Kinokunia Tokyo, 1973, 95–146 | MR | Zbl

[7] Papantonopoulou A., “Curves in Grassman variety”, Nagoya Math. J., 66 (1977), 121–137 | MR | Zbl

[8] Reid M., Lines on Fano 3-folds according to Shokurov, report No 11, Inst. Mitag-Leffler, 1980, 1–41

[9] Saint-Donat B., “Projective models ot $K3$ surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl

[10] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 922–964 | MR | Zbl

[11] Tango H., “On $(n-1)$-dimensional projective spaces contaned in the Grassmann variety Gr $(1, n)$”, J. Math. Kyoto Univ., 14:3 (1974), 415–460 | MR | Zbl

[12] Todd J. A., “The locus representing the lines of four-dimensional space and its applications to lenear complexes in four dimensions”, Proc. London Math. Soc., 30:2 (1930), 513–550 | DOI | Zbl

[13] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl