Random walks on free periodic groups
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 425-434

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper estimate is obtained for the growth exponent of the set of all uncancellable words equal to $1$ in a group given by a system of defining relations with the Dehn condition. By a theorem of Grigorchuk, this yields a sufficient test for the transience of a random walk on a group given by a system of defining relations with the Dehn condition, and for the nonamenability of such a group. It is proved that the free periodic groups $\mathbf B(m,n)$ with $m\geqslant2$ and odd $n\geqslant665$ satisfy this test. A question asked by Kesten in 1959 is thereby answered in the negative, and a conjecture put foth earlier by the author is confirmed. Bibliography: 7 titles.
@article{IM2_1983_21_3_a0,
     author = {S. I. Adian},
     title = {Random walks on free periodic groups},
     journal = {Izvestiya. Mathematics },
     pages = {425--434},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a0/}
}
TY  - JOUR
AU  - S. I. Adian
TI  - Random walks on free periodic groups
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 425
EP  - 434
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a0/
LA  - en
ID  - IM2_1983_21_3_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%T Random walks on free periodic groups
%J Izvestiya. Mathematics 
%D 1983
%P 425-434
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a0/
%G en
%F IM2_1983_21_3_a0
S. I. Adian. Random walks on free periodic groups. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 425-434. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a0/