Cohomology of Severi--Brauer varieties and the norm residue homomorphism
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 307-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic purpose of this paper is to prove bijectivity of the norm residue homomorphism $R_{F,n}\colon K_2(F)/nK_2(F)\to H^2(F,\mu_n^{\otimes 2})$ for any field $F$ of characteristic prime to $n$. In particular, if $\mu_n\subset F$, then any central simple algebra of exponent $n$ is similar to a tensor product of cyclic algebras. In the course of the proof we obtain partial degeneracy of the Gersten spectral sequence, and we compute some $K$-cohomology groups of Severi–Brauer groups corresponding to cyclic algebras of prime degree. The fundamental theorem also gives us several corollaries. Bibliography: 27 titles.
@article{IM2_1983_21_2_a5,
     author = {A. S. Merkur'ev and A. A. Suslin},
     title = {Cohomology of {Severi--Brauer} varieties and the norm residue homomorphism},
     journal = {Izvestiya. Mathematics },
     pages = {307--340},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
AU  - A. A. Suslin
TI  - Cohomology of Severi--Brauer varieties and the norm residue homomorphism
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 307
EP  - 340
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/
LA  - en
ID  - IM2_1983_21_2_a5
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%A A. A. Suslin
%T Cohomology of Severi--Brauer varieties and the norm residue homomorphism
%J Izvestiya. Mathematics 
%D 1983
%P 307-340
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/
%G en
%F IM2_1983_21_2_a5
A. S. Merkur'ev; A. A. Suslin. Cohomology of Severi--Brauer varieties and the norm residue homomorphism. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 307-340. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/

[1] Merkurev A. S., “O gomomorfizme normennogo vycheta stepeni dva”, Dokl. AN SSSR, 261:3 (1981), 542–547 | MR

[2] Merkurev A. S., Suslin A. A., “$K$-kogomologiya mnogoobrazii Severi–Brauera i gomomorfizm normennogo kachestva”, Dokl. AN SSSR, 264:3 (1982), 555–559 | MR

[3] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[4] Platonov V. P., “Problema Tannaka–Artina i privedennaya $K$-teoriya”, Izv. AN SSSR. Ser. matem., 40:2 (1976), 227–261 | MR | Zbl

[5] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[6] Suslin A. A., “Kvaternionnyi gomomorfizm dlya polei funktsii na konike”, Dokl. AN SSSR, 265:2 (1982) | MR | Zbl

[7] Shekhtman V. V., “Teorema Rimana–Rokha i spektralnaya posledovatelnost Ati–Khirtsebrukha”, Uspekhi matem. nauk, 35:6 (1980), 179–180 | MR | Zbl

[8] Albert A. A., Structure of algebras, Amer. Math. Soc. Coll. Publ., XXIV, 1939 | MR | Zbl

[9] Alperin R. C., Dennis R. K., “$K_2$ of quaternion algebras”, J. Algebra, 56:1 (1979), 262–273 | DOI | MR | Zbl

[10] Artin E., Tate J., Class field theory, Harvard, 1961

[11] Bass H., Tate J., “The Milnor ring of a global field”, Lecture Notes Math., 342, 1973, 346–349 | MR

[12] Bloch S., “Torsion algebraic cycles and the theorem of Roitman”, Compos. Math., 39:1 (1979), 107–127 | MR | Zbl

[13] Block S., “Torsion algebraic cycles, $K_2$, and Brauer groups of function fields”, Lect. Notes Math., 844, 1981, 75–102 | MR

[14] Gillet H., “Riemann–Roch theorem for higher algebraic $K$-theory”, Bull. Amer. Math. Soc., 3:2 (1980), 849–852 | DOI | MR | Zbl

[15] Grothendieck A., Le groupe de Brauer. I. Dix exposes sur la cohomologie des Schemas, North–Holland, Amsterdam, Masson, Paris, 1968

[16] Grothendieck A., Theorie Global des intersections et theoreme de Riemann–Roch, Lecture Notes Math., 225, 1971 | MR

[17] Grayson D., “Products in $K$-theory and intersecting algebraic cycles”, Invent. Math., 47 (1978), 71–83 | DOI | MR | Zbl

[18] Lam T. Y., The algebraic theory of quadratic forms, Benjamin, Reading, Massachusetts, 1973 | MR

[19] Milnor J., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9:4 (1970), 318–344 | DOI | MR | Zbl

[20] Quillen D., “Higher algebraic $K$-theory. I”, Lecture Notes Math., 341, 1973, 77–139 | MR

[21] Rehmann D., “Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkorpers”, J. f. die reine und angew. Mathem., 301 (1978), 77–104 | MR | Zbl

[22] Rehmann D., Stuhler U., “On $K_2$ of finite dimentional algebras over arithmetical fields”, Invent. math., 50 (1978), 75–90 | DOI | MR | Zbl

[23] Serre J.-P., Corps locaux, Hermann, Paris, 1968 | MR

[24] Sherman C., “$K$-cohomology of regular schemes”, Comm. Algebra, 7:10 (1979), 999–1027 | DOI | MR | Zbl

[25] Sherman C., “Some theorems on the $K$-theory of coherent sheaves”, Comm. Algebra, 7:14 (1979), 1489–1508 | DOI | MR | Zbl

[26] Tate J., “Relations between $K_2$ and Galois cohomology”, Invent. Math., 36 (1976), 257–274 | DOI | MR | Zbl

[27] Wong Sh., “On the commutator group of a simple algebra”, Amer. J. Math., 72 (1950), 323–334 | DOI | MR