Cohomology of Severi--Brauer varieties and the norm residue homomorphism
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 307-340

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic purpose of this paper is to prove bijectivity of the norm residue homomorphism $R_{F,n}\colon K_2(F)/nK_2(F)\to H^2(F,\mu_n^{\otimes 2})$ for any field $F$ of characteristic prime to $n$. In particular, if $\mu_n\subset F$, then any central simple algebra of exponent $n$ is similar to a tensor product of cyclic algebras. In the course of the proof we obtain partial degeneracy of the Gersten spectral sequence, and we compute some $K$-cohomology groups of Severi–Brauer groups corresponding to cyclic algebras of prime degree. The fundamental theorem also gives us several corollaries. Bibliography: 27 titles.
@article{IM2_1983_21_2_a5,
     author = {A. S. Merkur'ev and A. A. Suslin},
     title = {Cohomology of {Severi--Brauer} varieties and the norm residue homomorphism},
     journal = {Izvestiya. Mathematics },
     pages = {307--340},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
AU  - A. A. Suslin
TI  - Cohomology of Severi--Brauer varieties and the norm residue homomorphism
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 307
EP  - 340
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/
LA  - en
ID  - IM2_1983_21_2_a5
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%A A. A. Suslin
%T Cohomology of Severi--Brauer varieties and the norm residue homomorphism
%J Izvestiya. Mathematics 
%D 1983
%P 307-340
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/
%G en
%F IM2_1983_21_2_a5
A. S. Merkur'ev; A. A. Suslin. Cohomology of Severi--Brauer varieties and the norm residue homomorphism. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 307-340. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a5/