Birational geometry of toric 3-folds
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 269-280

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved. Suppose given smooth toric $3$-folds $X$ and $Y$ and a proper birational toric morphism $f\colon X\to Y$. Then $f$ decomposes as a composite of blow-ups and blow-downs in smooth toric strata. Bibliography: 7 titles.
@article{IM2_1983_21_2_a2,
     author = {V. I. Danilov},
     title = {Birational geometry of toric 3-folds},
     journal = {Izvestiya. Mathematics },
     pages = {269--280},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - Birational geometry of toric 3-folds
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 269
EP  - 280
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/
LA  - en
ID  - IM2_1983_21_2_a2
ER  - 
%0 Journal Article
%A V. I. Danilov
%T Birational geometry of toric 3-folds
%J Izvestiya. Mathematics 
%D 1983
%P 269-280
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/
%G en
%F IM2_1983_21_2_a2
V. I. Danilov. Birational geometry of toric 3-folds. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 269-280. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/