Birational geometry of toric 3-folds
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 269-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved. Suppose given smooth toric $3$-folds $X$ and $Y$ and a proper birational toric morphism $f\colon X\to Y$. Then $f$ decomposes as a composite of blow-ups and blow-downs in smooth toric strata. Bibliography: 7 titles.
@article{IM2_1983_21_2_a2,
     author = {V. I. Danilov},
     title = {Birational geometry of toric 3-folds},
     journal = {Izvestiya. Mathematics },
     pages = {269--280},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - Birational geometry of toric 3-folds
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 269
EP  - 280
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/
LA  - en
ID  - IM2_1983_21_2_a2
ER  - 
%0 Journal Article
%A V. I. Danilov
%T Birational geometry of toric 3-folds
%J Izvestiya. Mathematics 
%D 1983
%P 269-280
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/
%G en
%F IM2_1983_21_2_a2
V. I. Danilov. Birational geometry of toric 3-folds. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 269-280. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a2/

[1] Khironaka X., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70

[2] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal embedding. I, Lect. Notes in Math., 339, 1973 | MR | Zbl

[3] Oda T., Lecture on torus embeddings and applications. Tata Inst. Fund. Research, Springer-Verlag, Bombay, 1978 | MR

[4] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2 (1974), 85–134 | MR

[5] Reid M., “Canonical 3-fold”, Proceedings of the Journees de Géométrie Algébrique, Anger, 1979, 273–310 | MR

[6] Frumkin M. A., “Opisanie elementarnykh trekhmernykh mnogogrannikov”, I Vsesoyuznoe soveschanie po statisticheskomu i diskretnomu analizu nechislovoi informatsii, ekspertnym otsenkam i diskretnoi optimizatsii (tezisy dokladov), Moskva, Alma-Ata, 1981

[7] White G. K., “Lattice tetrahedra”, Canad. J. Math., 16:2 (1964), 389–397 | MR