Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1983_21_1_a2, author = {V. D. Goppa}, title = {Algebraico-geometric codes}, journal = {Izvestiya. Mathematics }, pages = {75--91}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {1983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a2/} }
V. D. Goppa. Algebraico-geometric codes. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a2/
[1] Hamming R. W., “Error detecting and error-correcting codes”, Bell System Techn. J., 29:2 (1950), 147–160 | MR
[2] Dieudonné J., “The historical development of algebraic geometry”, The Amer. Math. Monthly, 72:8 (1972), 827–866 | DOI | MR
[3] Abhyankar S. S., “Historical ramblings in algebraic geometry and related algebra”, The Amer. Math. Monthly, 63:6 (1976), 409–448 | DOI | MR
[4] Severi F., Vorlesungen über algehraische geometry, Teubner, Leipzig, Berlin, 1921 | Zbl
[5] Segre B., Lectures on modern geometry, Roma, 1961 | MR
[6] Hocquenghem A., “Codes correcteurs d'erreurs”, Chiffres, 2 (1959), 147–156 | MR | Zbl
[7] Bose R., Chakravarti I., “Ermitian varieties in a finite projective space $PG(N, q^2)$”, Canad. J. Math., 18 (1966), 1161 | MR | Zbl
[8] Segre B., “Introduction to Galois geometry”, Atti Accad. Naz. Lincei Mem. CI. Sc. Fis. Mat. Natur., 8:5 (1967), 136–236 | MR
[9] Muller D. E., “Application of boolean algebra to switching circuit design and to error detecting”, IEEE Computers, 3:1 (1954), 6–12
[10] Gilbert E., “A comparison of signaling alphabets”, Beil Syst. Tech. J., 31:1 (1952), 504–522
[11] Varshamov R. R., “Otsenka chisla signalov v kodakh s korrektsiei oshibok”, Dokl. AN SSSR, 117:5 (1957), 739–741 | Zbl
[12] Kasami T., Tokura N., Ivadari E., Inagaki Ya., Teoriya kodirovaniya, Mir, M., 1978 | MR
[13] Fulton W., Algebraic curves. An introduction to algebraic geometry, Benjamin, N. Y., 1969 | MR | Zbl
[14] Schmidt W. M., Equations over finite fields. An elementarv approach, Springer, Berlin, 1976 | MR
[15] Leng S., Vvedenie v algebraicheskie i abelevy funktsii, Mir, M., 1976 | MR | Zbl
[16] Goppa V. D., “Ratsionalnoe predstavlenie kodov i $(L, g)$-kody”, Probl. pered. inform., 7:3 (1971), 41–49 | MR | Zbl
[17] Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T., “Further results on Goppa codes and their applications to constructing efficient binary codes”, IEEE Trans. Inform. Theory, 22:5 (1976), 518–526 | DOI | MR | Zbl
[18] Mak-Vilyams Dzh., Sloen N., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1980
[19] Berlekamp E. R., Moreno O., “Extended double error-correcting binary Goppa codes are cyclic”, IEEE Trans. Inform. Theory, 19:6 (1973), 817–818 | DOI | MR | Zbl
[20] Moreno O., “Symmetries of binary Goppa codes”, IEEE Trans. Inform. Theory, 25:5 (1979), 609–612 | DOI | MR | Zbl
[21] Shannon C., “A mathematical theory of communication”, Bell Syst. Tech. J., 27 (1948), 379–423, 623–656 | MR
[22] Mahler K., Lectures on diophantine approximations. Part I. $g$-adic numbers and Roth's theorem, Univ. of Notre-Dame, 1961 | MR
[23] Piterson U., Kody, ispravlyayuschie oshibki, Mir, M., 1964 | MR
[24] Wiener N., The interpolation, extrapolation and smoothing of stationary time series, Wiley, N. Y., 1949 | Zbl
[25] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, M., 1971 | MR
[26] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980
[27] Kasami T., “An upper bound on $k/n$ for af fine-invariant codes with fixed $d/n$”, IEEE Trans. Inform. Theory, 15:9 (1969), 174–176 | DOI | MR | Zbl