On generic properties of closed geodesics
Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 1-29

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete proof is given of the theorem asserting that bumpy metrics are generic. This result was announced by Abraham (Global Analysis (Proc. Sympos. Pure Math., vol 14), Amer. Math. Soc., Providence, R. I., 1970, pp. 1–3.). Related results are used to rigourously carry out Poincaré's outline of a “bifurcation-theoretic” proof of the existence of closed geodesics without self-intersections for any Riemannian metric of positive curvature on the two-dimensional sphere $S^2$. To do this, it is essential that the lengths of all non-self-intersecting closed geodesics for the metrics on $S^2$, considered in the course of the proof, be uniformly bounded from above. Examples are given of $C^\infty$ metrics on $S^2$ (where the sign of the curvature alternates) for which there exist arbitrarily long closed geodesics without self-intersections. Bibliography: 27 titles.
@article{IM2_1983_21_1_a0,
     author = {D. V. Anosov},
     title = {On generic properties of closed geodesics},
     journal = {Izvestiya. Mathematics },
     pages = {1--29},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On generic properties of closed geodesics
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 1
EP  - 29
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/
LA  - en
ID  - IM2_1983_21_1_a0
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On generic properties of closed geodesics
%J Izvestiya. Mathematics 
%D 1983
%P 1-29
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/
%G en
%F IM2_1983_21_1_a0
D. V. Anosov. On generic properties of closed geodesics. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/