On generic properties of closed geodesics
Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete proof is given of the theorem asserting that bumpy metrics are generic. This result was announced by Abraham (Global Analysis (Proc. Sympos. Pure Math., vol 14), Amer. Math. Soc., Providence, R. I., 1970, pp. 1–3.). Related results are used to rigourously carry out Poincaré's outline of a “bifurcation-theoretic” proof of the existence of closed geodesics without self-intersections for any Riemannian metric of positive curvature on the two-dimensional sphere $S^2$. To do this, it is essential that the lengths of all non-self-intersecting closed geodesics for the metrics on $S^2$, considered in the course of the proof, be uniformly bounded from above. Examples are given of $C^\infty$ metrics on $S^2$ (where the sign of the curvature alternates) for which there exist arbitrarily long closed geodesics without self-intersections. Bibliography: 27 titles.
@article{IM2_1983_21_1_a0,
     author = {D. V. Anosov},
     title = {On generic properties of closed geodesics},
     journal = {Izvestiya. Mathematics },
     pages = {1--29},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On generic properties of closed geodesics
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 1
EP  - 29
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/
LA  - en
ID  - IM2_1983_21_1_a0
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On generic properties of closed geodesics
%J Izvestiya. Mathematics 
%D 1983
%P 1-29
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/
%G en
%F IM2_1983_21_1_a0
D. V. Anosov. On generic properties of closed geodesics. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a0/

[1] Abraham R., “Bumpy metrics”, Global analysis, Proc. sympos. pure math., 14, Amer. Math. Soc., Providence, R. I., 1970, 1–3 | MR

[2] Klingenberg W., Takens F., “Generic properties of geodesic flows”, Math. Annalen, 197:4 (1972), 323–334 | DOI | MR | Zbl

[3] Klingenberg V., Lektsii o zamknutykh geodezicheskikh, Mir, M., 1982 | MR | Zbl

[4] Ballman W., Thorbergsson G., Ziller W., “Closed geodesies and the fundamental group”, Duke Math. J., 48:3 (1981), 585–588 | DOI | MR | Zbl

[5] Abraham R., Robbin J., Transversal mappings and flows, W. A. Benjamin, Inc., N. Y., Amst., 1967 | MR

[6] Abraham R., “Transversality in manifolds of mappings”, Bull. Amer. Math. Soc., 69:4 (1963), 470–474 | DOI | MR | Zbl

[7] Abrakham R., “Transversalnost otobrazhenii”, Prilozhenie III k kn.: Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 169–200

[8] Puankare A., “O geodezicheskikh liniyakh na vypuklykh poverkhnostyakh”, Izbrannye trudy, t. II, Nauka, M., 1972, 735–774

[9] Anosov D. V., “Zamknutye geodezicheskie”, Kachestvennye metody issledovaniya nelineinykh differentsialnykh uravnenii i nelineinykh kolebanii, In-t matematiki AN USSR, Kiev, 1981, 5–24 | MR

[10] Birkhoff G. D., “Dynamical systems with two degrees of freedom”, Trans. Amer. Math. Soc., 18 (1917), 199–300 | DOI | MR

[11] Toponogov V. A., “Otsenka dliny zamknutoi geodezicheskoi na vypukloi poverkhnosti”, Dokl. AN SSSR, 124:2 (1959), 282–284 | MR | Zbl

[12] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113:3 (1980), 487–492 | MR | Zbl

[13] Ilyashenko Yu. S., “Razrushenie tsiklov v sloeniyakh na algebraicheskie krivye”, Matem. sb., 87:1 (1972), 58–66 | MR

[14] Devaney R. L., “Blue sky catastrophes in reversible and Hamiltonian systems”, Indiana Univ. Math. J., 26:2 (1977), 247–263 | DOI | MR | Zbl

[15] Meyer K. R., Palmore J., “A generic phenomenon in conservative Hamiltonian systems”, Global analysis (Proc. sympos. pure math.), 14, Amer. Math. Soc., Providence, R. I., 1970, 838–840 | MR

[16] Peixoto M. M., “On an approximation theorem of Kupka and Smale”, J. of differential equations, 3:2 (1967), 214–227 | DOI | MR

[17] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Nauka, M., 1967 | Zbl

[18] Fuller F. B., “The treatment of periodic orbits by the methods of fixed point theory”, Bull. Amer. Math. Soc., 72:5 (1966), 838–840 | DOI | MR | Zbl

[19] Fuller F. B., “An index of fixed point type for periodic orbits”, Amer. J. Math., 89:1 (1967), 133–148 | DOI | MR

[20] Fuller F. B., “The existence of periodic orbits”, Séminaire Trajectorien (1967–68, Strasbourg), Inst. de Recherche Matem. Avancee, 1968, 1–20

[21] Moser J., “Regularisation of Kepler's problem and the averaging method on a manifold”, Comm. pure appl. math., 23:4 (1970), 609–636 | DOI | MR | Zbl

[22] Bottkol M., “Bifurcation of periodic orbits on manifolds, and Hamiltonian systems”, Bull. Amer. Math. Soc., 83:5 (1977), 1060–1062 | DOI | MR | Zbl

[23] Weinstein A., “Bifurcations and Hamilton's principle”, Math. Zeitschr., 159:3 (1978), 235–248 | DOI | MR | Zbl

[24] Gryuntal A. I., “O zamknutykh samoneperesekayuschikhsya geodezicheskikh na poverkhnostyakh, blizkikh k sfere”, Uspekhi matem. nauk, 32:4 (1977), 244–245

[25] Gryuntal A. I., “Suschestvovanie zamknutoi samoneperesekayuscheisya geodezicheskoi obschego ellipticheskogo tipa na poverkhnostyakh, blizkikh k sfere”, Matem. zametki, 24:2 (1978), 267–278 | MR | Zbl

[26] Morse M., “The calculus of variations in the large”, Amer. Math. Soc. colloq. publ., 18, Amer. Math. Soc., N. Y., 1934 | MR | Zbl

[27] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl