An estimate for polynomials on analytic sets
Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 493-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a connected, analytic (in general, not closed) subset of the complex space $\mathbf C^n$ and let $K\subset A$ be a compact set which is not pluri-polar in $A$. In this article it is proved that the extremal function $V(z,K)$ is locally bounded on $A$ if and only if $A$ belongs to some algebraic set of the same dimension as $A$. Moreover, it is shown that for an algebraic set $A$ in a neighborhood of any ordinary point $z^0\in A_0$ the function $V(z,K)$ can be represented as the limit of an increasing sequence of maximal functions. Bibliography: 10 titles.
@article{IM2_1983_20_3_a4,
     author = {A. S. Sadullaev},
     title = {An estimate for polynomials on analytic sets},
     journal = {Izvestiya. Mathematics },
     pages = {493--502},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a4/}
}
TY  - JOUR
AU  - A. S. Sadullaev
TI  - An estimate for polynomials on analytic sets
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 493
EP  - 502
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a4/
LA  - en
ID  - IM2_1983_20_3_a4
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%T An estimate for polynomials on analytic sets
%J Izvestiya. Mathematics 
%D 1983
%P 493-502
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a4/
%G en
%F IM2_1983_20_3_a4
A. S. Sadullaev. An estimate for polynomials on analytic sets. Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 493-502. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a4/

[1] Ranning R., Rossi X., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[2] Josefson B., “On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on $\mathbf C^n$”, Arkiv for matem., 16:1 (1978), 109–115 | DOI | MR | Zbl

[3] Sadullaev A., “Operator $(dd^cu)^n$ i emkosti kondensatorov”, Dokl. AN SSSR, 251:1 (1980), 44–47 | MR | Zbl

[4] Zakharyuta V. P., “Ekstremalnye plyurisubgarmonicheskie funktsii, ortogonalnye polinomy i teorema Bernshteina–Uolsha dlya analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Ann. Pol. Math., 33 (1976), 137–148 | Zbl

[5] Zakharyuta V. P., “Prostranstvo analiticheskikh funktsii na algebraicheskikh mnogoobraziyakh v $\mathbf C^n$”, Izv. Sev.-Kavkaz. nauchn. tsentra vyssh. shkoly, 1977, no. 4, 52–55

[6] Rudin W., “A geometric criterion for algebraic varietis”, J. Math. and Mech., 17:7 (1968), 671–683 | MR | Zbl

[7] Sadullaev A., “Kriterii algebraichnosti analiticheskikh mnozhestv”, O golomorfnykh funktsiyakh mnogikh kompleksnykh peremennykh, Krasnoyarsk, 1976, 107–122

[8] Bedford E., Taylor B. A., “The Dirichlet problem for a comolex Monge–Ampere equation”, Invent Math., 37 (1976), 1–44 | DOI | MR | Zbl

[9] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii neskolkikh peremennykh”, Matem. sb., 93 (135):2 (1974), 296–313 | Zbl

[10] Docquier F., Grauert H., “Levisches Problem und Rungescher Satz”, Math. Ann., 140:2 (1960), 94–123 | DOI | MR | Zbl