Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1983_20_2_a6, author = {V. L. Popov}, title = {A~finiteness theorem for representations with a~free algebra of invariants}, journal = {Izvestiya. Mathematics }, pages = {333--354}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {1983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/} }
V. L. Popov. A~finiteness theorem for representations with a~free algebra of invariants. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 333-354. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/
[1] Popov V. L., “Konstruktivnaya teoriya invariantov”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1100–1120 | MR | Zbl
[2] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes linéaires algébriques dont l'algebre des invariants est libre”, C. R. Acad. Sci. Paris, 283 (1976), 875–878 | MR | Zbl
[3] Schwarz G. W., “Representations of simple Lie groups with regular rings of invariants”, Inv. Math., 49 (1978), 167–191 | DOI | MR | Zbl
[4] Springer T. A., “On the invariant theory of $SU_2$”, Indag. Math., 42 (1980), 339–345 | MR | Zbl
[5] Stanley R. P., “Combinatorics and invariant theory”, Proc. Symp. Pure Math., 34 (1979), 345–355 | MR | Zbl
[6] Stanley R. P., “Combinatorial reciprocity theorems”, Adv. Math., 14:2 (1974), 194–253 | DOI | MR | Zbl
[7] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl
[8] Hochster M., Roberts J., “Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay”, Adv. Math., 13 (1974), 125–175 | DOI | MR
[9] Luna D., “Slices étales”, Sur les groupes algébriques, t. 33, Soc. Math. France, Paris, 1973, 81–105 | MR | Zbl
[10] Weyl H., “Zur Darstellungstheorie und Invariantenabzählung der projectiven, der Komplex und Drehungsgruppe”, Ges. Abh., III (1968), 1–25
[11] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947
[12] Rosenlicht M., “A remark on quotient spaces”, An. Ac. Bras. Cienc., 35 (1963), 487–489 | MR | Zbl
[13] Burbaki N., Gruppy i algebry Li, glavy VII, VIII, Mir, M., 1978 | MR
[14] Popov V. L., “Predstavleniya so svobodnym modulem kovariantov”, Funkts. analiz i ego prilozh., 10:3 (1976), 91–92 | MR | Zbl
[15] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:1 (1972), 51–62 | Zbl
[16] Brouwer A. E., Cohen A. M., The Poincare series of the polinomials invariant under $SU_2$ in its irreducible representation of degree $\leqslant 17$, Report, No ZW 134/79, Math. Centrum, Amsterdam, 1979
[17] Kempf G., “The Hochster–Roberts theorem in invariant theory”, The Mich. Math. J., 26:3 (1979), 19–32 | MR | Zbl
[18] Stanley R. P., “Hilbert functions of graded algebras”, Adv. Math., 28:1 (1978), 57–83 | DOI | MR | Zbl
[19] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961
[20] Matsumura H., Commutative algebra, W. A. Benjamin Co., N. Y., 1970 | MR | Zbl
[21] Andreev E. M., Popov V. L., “O statsionarnykh podgruppakh tochek obschego polozheniya v prostranstve predstavleniya poluprostoi gruppy Li”, Funkts. analiz i ego prilozh., 5:4 (1971), 1–8 | MR | Zbl