A~finiteness theorem for representations with a~free algebra of invariants
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 333-354

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any connected semisimple algebraic group $G$ defined over an algebraically closed field of characteristic zero there exist (up to isomorphism) only a finite number of finite-dimensional rational $G$-modules containing no nonzero fixed vectors and having a free algebra of invariants. The proof is constructive and makes it possible in principle to indicate these $G$-modules explicitly. It is also proved that for all irreducible $G$-modules $V$, except for a finite number, the degree of the Poincaré series of the algebra of invariants (regarded as a rational function) equals $-\dim V$. Bibliography: 21 titles.
@article{IM2_1983_20_2_a6,
     author = {V. L. Popov},
     title = {A~finiteness theorem for representations with a~free algebra of invariants},
     journal = {Izvestiya. Mathematics },
     pages = {333--354},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - A~finiteness theorem for representations with a~free algebra of invariants
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 333
EP  - 354
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/
LA  - en
ID  - IM2_1983_20_2_a6
ER  - 
%0 Journal Article
%A V. L. Popov
%T A~finiteness theorem for representations with a~free algebra of invariants
%J Izvestiya. Mathematics 
%D 1983
%P 333-354
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/
%G en
%F IM2_1983_20_2_a6
V. L. Popov. A~finiteness theorem for representations with a~free algebra of invariants. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 333-354. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a6/