On functions of generalized bounded variation
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 267-301

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on passage to a limit under the sign of a Perron–Stieltjes integral, and it is used to obtain several other theorems, one of which is the following. Theorem. If $\Phi$ and its conjugate $\overline\Phi$ are functions of generalized bounded variation in the narrow sense on $[0,2\pi)$ that do not have discontinuities of the second kind nor removable discontinuities (that is, left-hand and right-hand limits exist at each point, and they do not coincide at a point of discontinuity), then $\Phi$ and $\overline\Phi$ are absolutely continuous functions in the generalized narrow sense on $[0,2\pi)$. It is shown that the results cannot be strengthened. Bibliography: 14 titles.
@article{IM2_1983_20_2_a4,
     author = {T. P. Lukashenko},
     title = {On functions of generalized bounded variation},
     journal = {Izvestiya. Mathematics },
     pages = {267--301},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a4/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - On functions of generalized bounded variation
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 267
EP  - 301
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a4/
LA  - en
ID  - IM2_1983_20_2_a4
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T On functions of generalized bounded variation
%J Izvestiya. Mathematics 
%D 1983
%P 267-301
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a4/
%G en
%F IM2_1983_20_2_a4
T. P. Lukashenko. On functions of generalized bounded variation. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 267-301. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a4/