The global Torelli theorem for Prym varieties at a~generic point
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 235-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that any unramified double cover of a sufficiently general (in the sense of moduli) curve of genus $\geqslant9$ can be uniquely recovered from its Prym variety with its canonical polarization. Bibliography: 23 titles.
@article{IM2_1983_20_2_a2,
     author = {V. I. Kanev},
     title = {The global {Torelli} theorem for {Prym} varieties at a~generic point},
     journal = {Izvestiya. Mathematics },
     pages = {235--257},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/}
}
TY  - JOUR
AU  - V. I. Kanev
TI  - The global Torelli theorem for Prym varieties at a~generic point
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 235
EP  - 257
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/
LA  - en
ID  - IM2_1983_20_2_a2
ER  - 
%0 Journal Article
%A V. I. Kanev
%T The global Torelli theorem for Prym varieties at a~generic point
%J Izvestiya. Mathematics 
%D 1983
%P 235-257
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/
%G en
%F IM2_1983_20_2_a2
V. I. Kanev. The global Torelli theorem for Prym varieties at a~generic point. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/

[1] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[2] Dalalyan S. G., “Mnogoobrazie Prima dvulistnogo nerazvetvlennogo nakrytiya giperellipticheskoi krivoi”, Uspekhi matem. nauk, 29:6(180) (1974), 165–166 | MR | Zbl

[3] Kanev V. I., “Otobrazhenie Prima – biratsionalnoe vlozhenie”, Dokl. AN SSSR, 261:3 (1981), 531–534 | MR

[4] Maklein S., Gomologiya, Mir, M., 1966

[5] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[6] Tyurin A. N., “O peresechenii kvadrik”, Uspekhi matem. nauk, 30:6 (1975), 51–99 | MR | Zbl

[7] Beauville A., “Prym varieties and the Schottky problem”, Invent. Math., 41:2 (1977), 149–196 | DOI | MR | Zbl

[8] Beauville A., “Variétés de Prym et jacobiennes intermediaires”, Ann. Scient. École norm. Supér., 10:3 (1977), 309–391 | MR | Zbl

[9] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 1969, no. 36, 75–109 | DOI | MR | Zbl

[10] Donagi R., “The tetragonal construction”, Bull. Amer. Math. Soc., 4:6 (1981), 181–185 | DOI | MR | Zbl

[11] Donagi R., Smith R., “The structure of the Prym map”, Acta Math., 146 (1981), 25 | DOI | MR | Zbl

[12] Fay J., Theta functions on Riemann Surfaces, Lect. Notes Math., 352, New York, Berlin, 1973 | MR | Zbl

[13] Griffiths Ph., “Periods of integrals on algebraic manifolds. II”, Amer. J. Math., 90:3 (1968), 805–865 | DOI | MR | Zbl

[14] Griffiths Ph., Harris J., Principles of algebraic geometry, Wiley and Sons, New York, 1978 | MR | Zbl

[15] Griffiths Ph., Harris J., “On the variety of special divisors on a general algebraic curve”, Duke Math. J., 47:1 (1980), 233–272 | DOI | MR | Zbl

[16] Hartshorne R., Algebraic Geometry, Springer-Verlag, New York, 1977 | MR | Zbl

[17] Kleiman S., Laksov D., “On the existence of special divisors”, Amer. J. Math., 94:2 (1972), 431–436 | DOI | MR | Zbl

[18] Mumford D., “Prym varieties. I”, Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers, Academic Press, New York, 1974, 325–350 | MR

[19] Rim D. S., On formal moduli of deformations, Lect. Notes Math., 288, Springer-Verlag, 1972 | MR | Zbl

[20] Rim D. S., “Torsion differentials and deformation”, Trans. Amer. Math. Soc., 169 (1972), 257–278 | DOI | MR | Zbl

[21] Saint-Donat B., “On Petii's analysis of the linear system of quadrics through a canonical curve”, Math. Ann., 206 (1973), 157–175 | DOI | MR | Zbl

[22] Schlessinger M., “Functors of Artin rings”, Trans. Amer. Math. Soc., 130:2 (1968), 208–222 | DOI | MR | Zbl

[23] Weil A., “Zum Beweis der Torellischen Satzes”, Nachr. Wiss. Göttingen, 1957, no. 2, 33–53 | MR