The global Torelli theorem for Prym varieties at a~generic point
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 235-257

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that any unramified double cover of a sufficiently general (in the sense of moduli) curve of genus $\geqslant9$ can be uniquely recovered from its Prym variety with its canonical polarization. Bibliography: 23 titles.
@article{IM2_1983_20_2_a2,
     author = {V. I. Kanev},
     title = {The global {Torelli} theorem for {Prym} varieties at a~generic point},
     journal = {Izvestiya. Mathematics },
     pages = {235--257},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/}
}
TY  - JOUR
AU  - V. I. Kanev
TI  - The global Torelli theorem for Prym varieties at a~generic point
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 235
EP  - 257
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/
LA  - en
ID  - IM2_1983_20_2_a2
ER  - 
%0 Journal Article
%A V. I. Kanev
%T The global Torelli theorem for Prym varieties at a~generic point
%J Izvestiya. Mathematics 
%D 1983
%P 235-257
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/
%G en
%F IM2_1983_20_2_a2
V. I. Kanev. The global Torelli theorem for Prym varieties at a~generic point. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a2/