Projective invariant Demazure models
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a detailed exposition of the construction of models of tori that are not decomposable over the base field. The presence of a finite number of nonconjugate subgroups in the group $\operatorname{GL}(n,\mathbf Z)$ enables one to classify the tori of given dimension by the Bravais type of their modules of rational characters. A quite complete description of projective Demazure models in low dimensions is given. The rationality of tori with cubic character lattices is proved. Bibliography: 15 titles.
@article{IM2_1983_20_2_a0,
     author = {V. E. Voskresenskii},
     title = {Projective invariant {Demazure} models},
     journal = {Izvestiya. Mathematics },
     pages = {189--202},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - Projective invariant Demazure models
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 189
EP  - 202
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/
LA  - en
ID  - IM2_1983_20_2_a0
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T Projective invariant Demazure models
%J Izvestiya. Mathematics 
%D 1983
%P 189-202
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/
%G en
%F IM2_1983_20_2_a0
V. E. Voskresenskii. Projective invariant Demazure models. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/