Projective invariant Demazure models
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a detailed exposition of the construction of models of tori that are not decomposable over the base field. The presence of a finite number of nonconjugate subgroups in the group $\operatorname{GL}(n,\mathbf Z)$ enables one to classify the tori of given dimension by the Bravais type of their modules of rational characters. A quite complete description of projective Demazure models in low dimensions is given. The rationality of tori with cubic character lattices is proved. Bibliography: 15 titles.
@article{IM2_1983_20_2_a0,
     author = {V. E. Voskresenskii},
     title = {Projective invariant {Demazure} models},
     journal = {Izvestiya. Mathematics },
     pages = {189--202},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - Projective invariant Demazure models
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 189
EP  - 202
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/
LA  - en
ID  - IM2_1983_20_2_a0
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T Projective invariant Demazure models
%J Izvestiya. Mathematics 
%D 1983
%P 189-202
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/
%G en
%F IM2_1983_20_2_a0
V. E. Voskresenskii. Projective invariant Demazure models. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/

[1] Demazure M., “Sous groupes algebriques de range maximum de groupe de Cremona”, Ann. Sci. Ec. Norm. Super. (4), 3:4 (1970), 507–588 | MR | Zbl

[2] Kempf G., Knudsen F., Mumford D., Soint-Donat B., Toroidal embeddings, Lect. Notes in Math., 1973, t. 339

[3] Voskresenskii V. E., “Mnogoobraziya, opredelyaemye tselochislennymi kvadratichnymi formami”, Tezisy dokladov Vsesoyuznoi konferentsii “Problemy analiticheskoi teorii chisel”, Vilnyus, 1974, 56–59

[4] Voskresenskii V. E., “Nekotorye voprosy biratsionalnoi geometrii algebraicheskikh torov”, Proc. Intern. Congress of Math. Canada, 1 (1974), 343–347

[5] Voskresenskii V. E., “O modulyakh Pikara proektivnykh modelei algebraicheskikh torov”, Issledovaniya po teorii chisel, 5, Saratovskii un-t, 1975, 14–21

[6] Voskresenskii V. E., “O modulyakh Pikara proektivnykh modelei algebraicheskikh torov. II”, Issledovaniya po teorii chisel, 6, Saratovskii un-t, 1975, 18–33 | Zbl

[7] Voskresenskii V. E., “Proektivnye modeli algebraicheskikh torov”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 4–7 | Zbl

[8] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matematicheskikh nauk, 33:2 (1978), 85–134 | MR | Zbl

[9] Brylinski J.-L., “Décomposition simpliciale d'un réseau, invariante par un groupe fini d'automorphismes”, C. R. Acad. Sci. Paris Sér. A, 288 (1979), 137–139 | MR | Zbl

[10] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977 | MR

[11] Suon R. G., “Indutsirovannye predstavleniya i proektivnye moduli”, Matematika, 8:1 (1964), 3–27

[12] Klyachko A. A., “Vektornye rassloeniya na modelyakh Demazyura”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 15–20

[13] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[14] Kunyavskii B. E., “O biratsionalnoi klassifikatsii torov maloi razmernosti”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 37–42 | Zbl

[15] Klyachko A. A., “Modeli Demazyura dlya spetsialnogo klassa torov”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 32–37