Projective invariant Demazure models
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a detailed exposition of the construction of models of tori that are not decomposable over the base field. The presence of a finite number of nonconjugate subgroups in the group $\operatorname{GL}(n,\mathbf Z)$ enables one to classify the tori of given dimension by the Bravais type of their modules of rational characters. A quite complete description of projective Demazure models in low dimensions is given. The rationality of tori with cubic character lattices is proved.
Bibliography: 15 titles.
@article{IM2_1983_20_2_a0,
author = {V. E. Voskresenskii},
title = {Projective invariant {Demazure} models},
journal = {Izvestiya. Mathematics },
pages = {189--202},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/}
}
V. E. Voskresenskii. Projective invariant Demazure models. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 189-202. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a0/