The influence of height on degenerations of algebraic surfaces of type~$K3$
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors announce the conjecture that a family of $K3$ surfaces the Artin height of whose generic fiber is greater than $2$ does not degenerate; they prove this conjecture for surfaces of degree $2$. As a corollary it is shown that a family of supersingular $K3$ surfaces does not degenerate; i.e., its variety of moduli is complete. Bibliography: 18 titles.
@article{IM2_1983_20_1_a7,
     author = {A. N. Rudakov and T. Tsink and I. R. Shafarevich},
     title = {The influence of height on degenerations of algebraic surfaces of type~$K3$},
     journal = {Izvestiya. Mathematics },
     pages = {119--135},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/}
}
TY  - JOUR
AU  - A. N. Rudakov
AU  - T. Tsink
AU  - I. R. Shafarevich
TI  - The influence of height on degenerations of algebraic surfaces of type~$K3$
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 119
EP  - 135
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/
LA  - en
ID  - IM2_1983_20_1_a7
ER  - 
%0 Journal Article
%A A. N. Rudakov
%A T. Tsink
%A I. R. Shafarevich
%T The influence of height on degenerations of algebraic surfaces of type~$K3$
%J Izvestiya. Mathematics 
%D 1983
%P 119-135
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/
%G en
%F IM2_1983_20_1_a7
A. N. Rudakov; T. Tsink; I. R. Shafarevich. The influence of height on degenerations of algebraic surfaces of type~$K3$. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/