The influence of height on degenerations of algebraic surfaces of type~$K3$
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors announce the conjecture that a family of $K3$ surfaces the Artin height of whose generic fiber is greater than $2$ does not degenerate; they prove this conjecture for surfaces of degree $2$. As a corollary it is shown that a family of supersingular $K3$ surfaces does not degenerate; i.e., its variety of moduli is complete.
Bibliography: 18 titles.
@article{IM2_1983_20_1_a7,
author = {A. N. Rudakov and T. Tsink and I. R. Shafarevich},
title = {The influence of height on degenerations of algebraic surfaces of type~$K3$},
journal = {Izvestiya. Mathematics },
pages = {119--135},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/}
}
TY - JOUR AU - A. N. Rudakov AU - T. Tsink AU - I. R. Shafarevich TI - The influence of height on degenerations of algebraic surfaces of type~$K3$ JO - Izvestiya. Mathematics PY - 1983 SP - 119 EP - 135 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/ LA - en ID - IM2_1983_20_1_a7 ER -
A. N. Rudakov; T. Tsink; I. R. Shafarevich. The influence of height on degenerations of algebraic surfaces of type~$K3$. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/