The influence of height on degenerations of algebraic surfaces of type~$K3$
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors announce the conjecture that a family of $K3$ surfaces the Artin height of whose generic fiber is greater than $2$ does not degenerate; they prove this conjecture for surfaces of degree $2$. As a corollary it is shown that a family of supersingular $K3$ surfaces does not degenerate; i.e., its variety of moduli is complete. Bibliography: 18 titles.
@article{IM2_1983_20_1_a7,
     author = {A. N. Rudakov and T. Tsink and I. R. Shafarevich},
     title = {The influence of height on degenerations of algebraic surfaces of type~$K3$},
     journal = {Izvestiya. Mathematics },
     pages = {119--135},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/}
}
TY  - JOUR
AU  - A. N. Rudakov
AU  - T. Tsink
AU  - I. R. Shafarevich
TI  - The influence of height on degenerations of algebraic surfaces of type~$K3$
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 119
EP  - 135
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/
LA  - en
ID  - IM2_1983_20_1_a7
ER  - 
%0 Journal Article
%A A. N. Rudakov
%A T. Tsink
%A I. R. Shafarevich
%T The influence of height on degenerations of algebraic surfaces of type~$K3$
%J Izvestiya. Mathematics 
%D 1983
%P 119-135
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/
%G en
%F IM2_1983_20_1_a7
A. N. Rudakov; T. Tsink; I. R. Shafarevich. The influence of height on degenerations of algebraic surfaces of type~$K3$. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a7/

[1] Artin M., “Supersingular $K3$ surfaces”, Ann. Sci. l'Ecole Norm. Sup.(4), 7:4 (1974), 543–567 | MR | Zbl

[2] Artin M., “Algebraic construction of Brieskorn's resolutions”, J. of Algebra, 29:2 (1974), 330–348 | DOI | MR | Zbl

[3] Artin M., Mazur B., “Formal groups, arising from algebraic varieties”, Ann. Sci. l'Ecole Norm. Sup.(4), 10:1 (1977), 87–131 | MR

[4] Dolgachev I., Weighted Projective Varieties, preprint, 1978 | MR

[5] Grothendieck A., “Elements de geometrie algebrique. I”, Inst. Hautes Etudes Sci. Publ. Math., 1960, no. 4

[6] Horikawa E., “Surjectivity of the Period Map of $K3$ Surfaces of Degree 2”, Math. Ann., 228:2 (1977), 113–146 | DOI | MR | Zbl

[7] Kulikov V. S., “Vyrozhdeniya $K3$ poverkhnostei”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl

[8] Manin Yu. I., “Teoriya kommutativnykh formalnykh grupp nad polyami konechnoi kharakteristiki”, Uspekhi matem. nauk, 18:6 (1963), 3–90 | MR | Zbl

[9] Mumford D., Geometric invariant theory, Berlin, 1965 | MR

[10] Mumford D., “Stability of projective varieties”, l'Enseignemen Mathematique (2), 23:1–2, 39–110 | MR | Zbl

[11] Ogus A., “Supersingular $K3$ crystals”, Journées de Algébrique de Rennes (Rennes, 1978), Astérisque, 64, Soc. Math. France, Paris, 1979, 3–86 | MR

[12] Pyatetskii-Shapiro, Shafarevich I. P., “Analog teoremy Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572

[13] Raynaud M., “"$p$-torsion" du schema de Picard”, Journées de Algébrique de Rennes (Rennes, 1978), Astérisque, 64, Soc. Math. France, Paris, 1979, 87–148 | MR

[14] Rudakov A. N., Shafarevich I. R., “Supersingulyarnye poverkhnosti tipa $K3$ nad polyami kharakteristiki 2”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 843–869 | MR

[15] Rudakov A. N., Shafarevich I. R., “O vyrozhdenii poverkhnostei tipa $K3$ nad polyami konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 646–661 | MR | Zbl

[16] Rudakov A. N., Shafarevich I. R., “O vyrozhdenii poverkhnostei tipa $K3$”, Dokl. AN SSSR, 259:5 (1981), 1050–1052 | MR | Zbl

[17] Schlessinger M., “Functors on Artin Rings”, Trans. Amer. Math. Soc., 130 (1968), 205–222 | DOI | MR

[18] Shah J., “A complete moduli space for $K3$ surfaces of degree 2”, Ann. Math., 112 (1980), 480–510 | DOI | MR