On orbit spaces of finite and connected linear groups
Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 97-101
Cet article a éte moissonné depuis la source Math-Net.Ru
Using geometric properties of the orbit space, the author gives a characterization of finite linear groups generated by reflections. Sufficient conditions that the module of covariants for a connected reductive group be free are indicated. Bibliography: 7 titles.
@article{IM2_1983_20_1_a5,
author = {D. I. Panyushev},
title = {On orbit spaces of finite and connected linear groups},
journal = {Izvestiya. Mathematics},
pages = {97--101},
year = {1983},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/}
}
D. I. Panyushev. On orbit spaces of finite and connected linear groups. Izvestiya. Mathematics, Tome 20 (1983) no. 1, pp. 97-101. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/
[1] Luna D., “Slices etales”, Sur les groupes algébriques, Mémoire 33, Soc. Math. France, Paris, 1973, 81–105 | MR | Zbl
[2] Luna D., Richardson R., “A generalization of the Chevalley restriction theorem”, Duke math. J., 46:3 (1980), 487–496 | DOI | MR
[3] Schwarz G., “Lifting smooth homotopies of orbit Spaces”, Publ. math. IHES, 1980, no. 51, 37–136 | MR
[4] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl
[5] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971
[6] Mumford D., Geometric invariant theory, Springer, Berlin, 1965 | MR | Zbl
[7] Popov V. L., “Predstavleniya so svobodnym modulem kovariantov”, Funkts. analiz, 10:3 (1976), 91–92 | MR | Zbl