On orbit spaces of finite and connected linear groups
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 97-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using geometric properties of the orbit space, the author gives a characterization of finite linear groups generated by reflections. Sufficient conditions that the module of covariants for a connected reductive group be free are indicated. Bibliography: 7 titles.
@article{IM2_1983_20_1_a5,
     author = {D. I. Panyushev},
     title = {On orbit spaces of finite and connected linear groups},
     journal = {Izvestiya. Mathematics },
     pages = {97--101},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - On orbit spaces of finite and connected linear groups
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 97
EP  - 101
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/
LA  - en
ID  - IM2_1983_20_1_a5
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T On orbit spaces of finite and connected linear groups
%J Izvestiya. Mathematics 
%D 1983
%P 97-101
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/
%G en
%F IM2_1983_20_1_a5
D. I. Panyushev. On orbit spaces of finite and connected linear groups. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 97-101. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a5/

[1] Luna D., “Slices etales”, Sur les groupes algébriques, Mémoire 33, Soc. Math. France, Paris, 1973, 81–105 | MR | Zbl

[2] Luna D., Richardson R., “A generalization of the Chevalley restriction theorem”, Duke math. J., 46:3 (1980), 487–496 | DOI | MR

[3] Schwarz G., “Lifting smooth homotopies of orbit Spaces”, Publ. math. IHES, 1980, no. 51, 37–136 | MR

[4] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl

[5] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[6] Mumford D., Geometric invariant theory, Springer, Berlin, 1965 | MR | Zbl

[7] Popov V. L., “Predstavleniya so svobodnym modulem kovariantov”, Funkts. analiz, 10:3 (1976), 91–92 | MR | Zbl