Mappings of free $\mathbf Z_p$-spaces into manifolds
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 35-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers generalizations of the Bourgin–Yang theorem. It is shown that if $f\colon X\to M$ is a continuous mapping of a paracompact free $\mathbf Z_p$-space $X$ into an $m$-dimensional manifold $M$, then, under the condition that $\operatorname{in}X\geqslant n>m(p-1)$ (where $\operatorname{in}X$ is the index in the sense of Yang) and $f^*V_i=0$ for $i\geqslant1$, where the $V_i$ are the Wu classes of $M$, the following inequality holds: $$ \operatorname{in}\{x\in X\mid f(x)=f(gx)\ \forall g\in\mathbf Z_p\}\geqslant n-m(p-1). $$ Besides this result, certain “nonsymmetric” versions of the Borsuk–Ulam theorem are proved. Bibliography: 16 titles.
@article{IM2_1983_20_1_a2,
     author = {A. Yu. Volovikov},
     title = {Mappings of free $\mathbf Z_p$-spaces into manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {35--53},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Mappings of free $\mathbf Z_p$-spaces into manifolds
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 35
EP  - 53
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/
LA  - en
ID  - IM2_1983_20_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Mappings of free $\mathbf Z_p$-spaces into manifolds
%J Izvestiya. Mathematics 
%D 1983
%P 35-53
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/
%G en
%F IM2_1983_20_1_a2
A. Yu. Volovikov. Mappings of free $\mathbf Z_p$-spaces into manifolds. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/

[1] Thom R., “Une théorie intrinséque des piussance de Steenrod”, Colloque de Topologie de Strasbourg, 1951, No VII, La Bibliothèque Nationale et Universitaire de Strasbourg, 1952

[2] Yang C. T., “On theorems of Borsuk–Ulam, Kabutani–Yamabe–Yujobô and Dyson”, Ann. of Math., 60 (1954), 271–283 | DOI

[3] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[4] Haefliger A., “Points multiples d'une application et produite cyclique reduite”, Amer. J. Math., 83 (1961), 57–70 | DOI | MR | Zbl

[5] Steenrod N., Epstein D., Cohomology operations, Lectures by N. E. S. Teenrod written and revised by D. B. A. Epstein Annals of Mathematics Studies, No 50, Princeton University Press, Princeton, N.J., 1962 | MR | Zbl

[6] Bredon G. E., Sheaf theory, McGraw–Hill, New York, 1967 | MR | Zbl

[7] Bredon G. E., “Cohomological aspects of transformation groups”, Proceedings of the conference on transformation groups (New Orleans, 1967), Springer-Verlag, 245–280 | MR

[8] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969

[9] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, XXIV:5(149) (1969), 87–140

[10] Nakaoka M., “Generalizations of Borsuk–Ulam theorem”, Osaka J. Math., 2 (1970), 423–441 | MR

[11] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[12] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | Zbl

[13] Fenn R., “Some generalizations of the Borsuk–Ulam theorem and applications to realizing homotopy classes by embedded spheres”, Proc. Cambridge Philos. Soc., 74 (1973), 251–256 | DOI | MR | Zbl

[14] Spież S., “On generalization of theorems of Borsuk–Ulam, Dyson and Livesay”, Bull. Acad. Pol. Sci., Ser. sci. math., astron. et phys., 26 (1978), 325–333 | MR | Zbl

[15] Massey W. S., Homology and cohomology theory, Dekker, New York, 1978 | MR | Zbl

[16] Nakaoka M., “Equivariant point theorems”, Tsukuba J. Math., 2 (1978), 109–126 | MR | Zbl