Mappings of free $\mathbf Z_p$-spaces into manifolds
Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 35-53

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers generalizations of the Bourgin–Yang theorem. It is shown that if $f\colon X\to M$ is a continuous mapping of a paracompact free $\mathbf Z_p$-space $X$ into an $m$-dimensional manifold $M$, then, under the condition that $\operatorname{in}X\geqslant n>m(p-1)$ (where $\operatorname{in}X$ is the index in the sense of Yang) and $f^*V_i=0$ for $i\geqslant1$, where the $V_i$ are the Wu classes of $M$, the following inequality holds: $$ \operatorname{in}\{x\in X\mid f(x)=f(gx)\ \forall g\in\mathbf Z_p\}\geqslant n-m(p-1). $$ Besides this result, certain “nonsymmetric” versions of the Borsuk–Ulam theorem are proved. Bibliography: 16 titles.
@article{IM2_1983_20_1_a2,
     author = {A. Yu. Volovikov},
     title = {Mappings of free $\mathbf Z_p$-spaces into manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {35--53},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Mappings of free $\mathbf Z_p$-spaces into manifolds
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 35
EP  - 53
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/
LA  - en
ID  - IM2_1983_20_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Mappings of free $\mathbf Z_p$-spaces into manifolds
%J Izvestiya. Mathematics 
%D 1983
%P 35-53
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/
%G en
%F IM2_1983_20_1_a2
A. Yu. Volovikov. Mappings of free $\mathbf Z_p$-spaces into manifolds. Izvestiya. Mathematics , Tome 20 (1983) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/IM2_1983_20_1_a2/