On~the exceptional set for the sum of a~prime and a~perfect square
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new theorem is obtained on the mean value of the number of representations of natural numbers $n$ as the sum of a prime and a perfect square, from which it is deduced that there are at most $Ne^{-a\sqrt{\log N}}$, $a>0$, natural numbers $n\leqslant N$ not representable as such a sum. Bibliography: 17 titles.
@article{IM2_1982_19_3_a5,
     author = {I. V. Polyakov},
     title = {On~the exceptional set for the sum of a~prime and a~perfect square},
     journal = {Izvestiya. Mathematics },
     pages = {611--641},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/}
}
TY  - JOUR
AU  - I. V. Polyakov
TI  - On~the exceptional set for the sum of a~prime and a~perfect square
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 611
EP  - 641
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/
LA  - en
ID  - IM2_1982_19_3_a5
ER  - 
%0 Journal Article
%A I. V. Polyakov
%T On~the exceptional set for the sum of a~prime and a~perfect square
%J Izvestiya. Mathematics 
%D 1982
%P 611-641
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/
%G en
%F IM2_1982_19_3_a5
I. V. Polyakov. On~the exceptional set for the sum of a~prime and a~perfect square. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/

[1] Eiler L., Sbornik statei v chest 250-letiya so dnya rozhdeniya, AN SSSR, M., 1958, 80–95

[2] Hardy G. H., Littlewood J. E., “Some problems of partitio numerorum. III: On the expression of a number as a sum of primes”, Acta. Math., 44 (1923), 1–70 | DOI | MR

[3] Davenport H., Heibbronn H., “Note on a result in the additive theory of numbers”, Proc. London Math. Soc., 43 (1937), 142–151 | DOI | Zbl

[4] Prahar K., “Über Zahlen, die sich als Summe einer Primrahl und einer “kleinen” Potenz darstellen lassen, II”, Mh. Math., 69 (1964), 62–68 | DOI | MR

[5] Miech R. J., “On the equation $n=p+x^2$”, Transl. Amer. Math. Soc., 130:3 (1968), 494–512 | DOI | MR | Zbl

[6] Chudakov N. G., “O plotnosti sovokupnosti chetnykh chisel, nepredstavimykh, kak summa dvukh nechetnykh prostykh”, Izv. AN SSSR. Ser. matem., 1938, no. 1, 25–40 | Zbl

[7] Lavrik A. F., “K teorii raspredeleniya prostykh chisel na osnove metoda trigonometricheskikh summ I. M. Vinogradova”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 64, 1961, 90–125 | MR | Zbl

[8] Gallagher P. X., “A large sieve density ectimate near $\sigma=1$”, Invent. Math., 11 (1970), 329–339 | DOI | MR | Zbl

[9] Gallagher P. X., “Primes and power of 2”, Invent. Math., 29:2 (1975), 125–142 | DOI | MR | Zbl

[10] Montgomery H. L., Vaughan R. C., “The exceptional set in Goldbach's problem”, Acta Arith., 27 (1975), 353–370 | MR | Zbl

[11] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl

[12] Khua Lo-Ken, Additivnaya teoriya prostykh chisel, Tr. matem. in-ta im. V. A. Steklova AN SSSR, 22, M.–L., 1947 | MR | Zbl

[13] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[14] Montgomeri G., Multiplikativnaya teoriya chisel, Mir, M., 1974 | MR

[15] Valfish A. Z., Tselye tochki v mnogomernykh sharakh, Tbilisi, 1960 | MR

[16] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[17] Polyakov I. V., “O predstavlenii chisel v vide summy prostogo chisla i kvadrata tselogo”, Izv. AN UzSSR, seriya fiz. matem., 1979, no. 2, 34–39 | MR | Zbl