On~the exceptional set for the sum of a~prime and a~perfect square
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641

Voir la notice de l'article provenant de la source Math-Net.Ru

A new theorem is obtained on the mean value of the number of representations of natural numbers $n$ as the sum of a prime and a perfect square, from which it is deduced that there are at most $Ne^{-a\sqrt{\log N}}$, $a>0$, natural numbers $n\leqslant N$ not representable as such a sum. Bibliography: 17 titles.
@article{IM2_1982_19_3_a5,
     author = {I. V. Polyakov},
     title = {On~the exceptional set for the sum of a~prime and a~perfect square},
     journal = {Izvestiya. Mathematics },
     pages = {611--641},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/}
}
TY  - JOUR
AU  - I. V. Polyakov
TI  - On~the exceptional set for the sum of a~prime and a~perfect square
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 611
EP  - 641
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/
LA  - en
ID  - IM2_1982_19_3_a5
ER  - 
%0 Journal Article
%A I. V. Polyakov
%T On~the exceptional set for the sum of a~prime and a~perfect square
%J Izvestiya. Mathematics 
%D 1982
%P 611-641
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/
%G en
%F IM2_1982_19_3_a5
I. V. Polyakov. On~the exceptional set for the sum of a~prime and a~perfect square. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/