On~the exceptional set for the sum of a~prime and a~perfect square
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641
Voir la notice de l'article provenant de la source Math-Net.Ru
A new theorem is obtained on the mean value of the number of representations of natural numbers $n$ as the sum of a prime and a perfect square, from which it is deduced that there are at most $Ne^{-a\sqrt{\log N}}$, $a>0$, natural numbers $n\leqslant N$ not representable as such a sum.
Bibliography: 17 titles.
@article{IM2_1982_19_3_a5,
author = {I. V. Polyakov},
title = {On~the exceptional set for the sum of a~prime and a~perfect square},
journal = {Izvestiya. Mathematics },
pages = {611--641},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/}
}
I. V. Polyakov. On~the exceptional set for the sum of a~prime and a~perfect square. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 611-641. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a5/