On~residues in algebraic geometry
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\colon X\to S$ be a dominant morphism of algebraic schemes, with $S$ integral. Let $n$ be the relative dimension of $f$ and let $x=(x_0,x_1,\dots,x_n)$ be a sequence of points of $X$ such that, for all $0\leqslant i\leqslant n$, $x_i$ is a specialization of $x_{i-1}$, has codimension $i$ and is mapped into the generic point of $S$. Under these conditions a residue mapping (of $f$ into the “chain” $x$) $$ \operatorname{Res}_x^f\colon\Omega^*(X)\to\Omega^*(S) $$ is defined and its main properties, in particular the “residue formula”, are proved. Bibliography: 14 titles.
@article{IM2_1982_19_3_a2,
     author = {V. G. Lomadze},
     title = {On~residues in algebraic geometry},
     journal = {Izvestiya. Mathematics },
     pages = {495--520},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/}
}
TY  - JOUR
AU  - V. G. Lomadze
TI  - On~residues in algebraic geometry
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 495
EP  - 520
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/
LA  - en
ID  - IM2_1982_19_3_a2
ER  - 
%0 Journal Article
%A V. G. Lomadze
%T On~residues in algebraic geometry
%J Izvestiya. Mathematics 
%D 1982
%P 495-520
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/
%G en
%F IM2_1982_19_3_a2
V. G. Lomadze. On~residues in algebraic geometry. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/