On~residues in algebraic geometry
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f\colon X\to S$ be a dominant morphism of algebraic schemes, with $S$ integral. Let $n$ be the relative dimension of $f$ and let $x=(x_0,x_1,\dots,x_n)$ be a sequence of points of $X$ such that, for all $0\leqslant i\leqslant n$, $x_i$ is a specialization of $x_{i-1}$, has codimension $i$ and is mapped into the generic point of $S$. Under these conditions a residue mapping (of $f$ into the “chain” $x$)
$$
\operatorname{Res}_x^f\colon\Omega^*(X)\to\Omega^*(S)
$$
is defined and its main properties, in particular the “residue formula”, are proved.
Bibliography: 14 titles.
@article{IM2_1982_19_3_a2,
author = {V. G. Lomadze},
title = {On~residues in algebraic geometry},
journal = {Izvestiya. Mathematics },
pages = {495--520},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/}
}
V. G. Lomadze. On~residues in algebraic geometry. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/