On~residues in algebraic geometry
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\colon X\to S$ be a dominant morphism of algebraic schemes, with $S$ integral. Let $n$ be the relative dimension of $f$ and let $x=(x_0,x_1,\dots,x_n)$ be a sequence of points of $X$ such that, for all $0\leqslant i\leqslant n$, $x_i$ is a specialization of $x_{i-1}$, has codimension $i$ and is mapped into the generic point of $S$. Under these conditions a residue mapping (of $f$ into the “chain” $x$) $$ \operatorname{Res}_x^f\colon\Omega^*(X)\to\Omega^*(S) $$ is defined and its main properties, in particular the “residue formula”, are proved. Bibliography: 14 titles.
@article{IM2_1982_19_3_a2,
     author = {V. G. Lomadze},
     title = {On~residues in algebraic geometry},
     journal = {Izvestiya. Mathematics },
     pages = {495--520},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/}
}
TY  - JOUR
AU  - V. G. Lomadze
TI  - On~residues in algebraic geometry
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 495
EP  - 520
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/
LA  - en
ID  - IM2_1982_19_3_a2
ER  - 
%0 Journal Article
%A V. G. Lomadze
%T On~residues in algebraic geometry
%J Izvestiya. Mathematics 
%D 1982
%P 495-520
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/
%G en
%F IM2_1982_19_3_a2
V. G. Lomadze. On~residues in algebraic geometry. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 495-520. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a2/

[1] Parshin A. N., “K arifmetike dvumernykh skhem. I: Raspredeleniya i vychety”, Izv. AN SSSR. Ser. matem., 40:4 (1976), 736–773 | MR | Zbl

[2] Elzein F., “Residus en Géométrie Algébrique”, Compos. Math., 23 (1971), 379–405 | MR | Zbl

[3] Bass H., Tate J., “The Milnor ring of a global field”, Lect. Notes Math., 342, 1972, 349–446 | MR

[4] Cartier P., “Questions de rationalité des diviseurs en géométrie algébrique”, Bulletin Soc. Math. France, 86 (1958), 177–251 | MR | Zbl

[5] Tate J., “Genus change in purely inseparable extensions of function fields”, Proc. AMS, 3 (1952), 400–406 | DOI | MR | Zbl

[6] Parshin A. N., “Polya klassov i algebraicheskaya $K$-teoriya”, Uspekhi matem. nauk, 30:1 (1975), 253–254 | MR | Zbl

[7] Parshin A. N., “Abelevy nakrytiya arifmeticheskikh skhem”, Dokl. AN SSSR, 243:4 (1978), 855–858 | MR | Zbl

[8] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. I, II, IL, M., 1963

[9] Lomadze V. G., “Ob indekse peresecheniya divizorov”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1120–1130 | MR | Zbl

[10] Grothendieck A., Dieudonné J., “Eléments de géométrie algébrique”, Publ. Math., IHES, 1967, no. 11

[11] Beilinson A. A., “Vychety i adeli”, Funkts. analiz i ego prilozheniya, 14:1 (1980), 44–45 | MR | Zbl

[12] Hartshorne R., Residues and Duality, Springer, Berlin, 1966 | MR | Zbl

[13] Grotendik A., “Teoriya kogomologii abstraktnykh algebraicheskikh mnogoobrazii”, Mezhdunarodnyi matematicheskii kongress v Edinburge, Fizmatgiz, M., 1962

[14] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | MR