On~integro-functional operators with a~shift which is not one-to-one
Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 479-493

Voir la notice de l'article provenant de la source Math-Net.Ru

Functional and singular integro-functional operators with nonunivalent shift are considered. The spectrum of a weighted shift operator in the space $L_p(\Gamma)$, $1\leqslant p\leqslant\infty$, is studied in the case where the shift is an expanding nonunivalent mapping of a smooth finite-dimensional mapping of a manifold $\Gamma$. Necessary and sufficient conditions for the Fredholm property are obtained, as well as a formula for computing the index of a singular integral operator with nonunivalent expanding shift of the unit circle. Bibliography: 17 titles.
@article{IM2_1982_19_3_a1,
     author = {Yu. D. Latushkin},
     title = {On~integro-functional operators with a~shift which is not one-to-one},
     journal = {Izvestiya. Mathematics },
     pages = {479--493},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a1/}
}
TY  - JOUR
AU  - Yu. D. Latushkin
TI  - On~integro-functional operators with a~shift which is not one-to-one
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 479
EP  - 493
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a1/
LA  - en
ID  - IM2_1982_19_3_a1
ER  - 
%0 Journal Article
%A Yu. D. Latushkin
%T On~integro-functional operators with a~shift which is not one-to-one
%J Izvestiya. Mathematics 
%D 1982
%P 479-493
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a1/
%G en
%F IM2_1982_19_3_a1
Yu. D. Latushkin. On~integro-functional operators with a~shift which is not one-to-one. Izvestiya. Mathematics , Tome 19 (1982) no. 3, pp. 479-493. http://geodesic.mathdoc.fr/item/IM2_1982_19_3_a1/