On~local representation of zero by a~form
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 231-240

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that for any natural number $n\geqslant n_0$ and for any $p$ there exists a form $F$ of degree not exceeding $n$ whose coefficients are integral over $Q_p$ and whose number $k$ of variables satisfies the inequality $$ k\geqslant p^u,\qquad u=\frac n{\log_p^2n\log_p\log_p^3n},\quad\log_p\log_p\log_p\log_p\log_p\log_p n_0=11, $$ which can only trivially represent zero in $Q_p$. Bibliography: 6 titles.
@article{IM2_1982_19_2_a1,
     author = {G. I. Arkhipov and A. A. Karatsuba},
     title = {On~local representation of zero by a~form},
     journal = {Izvestiya. Mathematics },
     pages = {231--240},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/}
}
TY  - JOUR
AU  - G. I. Arkhipov
AU  - A. A. Karatsuba
TI  - On~local representation of zero by a~form
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 231
EP  - 240
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/
LA  - en
ID  - IM2_1982_19_2_a1
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%A A. A. Karatsuba
%T On~local representation of zero by a~form
%J Izvestiya. Mathematics 
%D 1982
%P 231-240
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/
%G en
%F IM2_1982_19_2_a1
G. I. Arkhipov; A. A. Karatsuba. On~local representation of zero by a~form. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/