On~local representation of zero by a~form
Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 231-240
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article it is proved that for any natural number $n\geqslant n_0$ and for any $p$ there exists a form $F$ of degree not exceeding $n$ whose coefficients are integral over $Q_p$ and whose number $k$ of variables satisfies the inequality
$$
k\geqslant p^u,\qquad u=\frac n{\log_p^2n\log_p\log_p^3n},\quad\log_p\log_p\log_p\log_p\log_p\log_p n_0=11,
$$
which can only trivially represent zero in $Q_p$.
Bibliography: 6 titles.
@article{IM2_1982_19_2_a1,
author = {G. I. Arkhipov and A. A. Karatsuba},
title = {On~local representation of zero by a~form},
journal = {Izvestiya. Mathematics },
pages = {231--240},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/}
}
G. I. Arkhipov; A. A. Karatsuba. On~local representation of zero by a~form. Izvestiya. Mathematics , Tome 19 (1982) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/