On local representation of zero by a form
Izvestiya. Mathematics, Tome 19 (1982) no. 2, pp. 231-240
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article it is proved that for any natural number $n\geqslant n_0$ and for any $p$ there exists a form $F$ of degree not exceeding $n$ whose coefficients are integral over $Q_p$ and whose number $k$ of variables satisfies the inequality $$ k\geqslant p^u,\qquad u=\frac n{\log_p^2n\log_p\log_p^3n},\quad\log_p\log_p\log_p\log_p\log_p\log_p n_0=11, $$ which can only trivially represent zero in $Q_p$. Bibliography: 6 titles.
@article{IM2_1982_19_2_a1,
author = {G. I. Arkhipov and A. A. Karatsuba},
title = {On~local representation of zero by a~form},
journal = {Izvestiya. Mathematics},
pages = {231--240},
year = {1982},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/}
}
G. I. Arkhipov; A. A. Karatsuba. On local representation of zero by a form. Izvestiya. Mathematics, Tome 19 (1982) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/IM2_1982_19_2_a1/
[1] Terjanian G., “Un contre-exemple á une conjecture d'Artin”, Compt. Rend. Acad. Sci., 262 (1966), 612 | MR | Zbl
[2] Browkin J., “On forms over $p$-adic fields”, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astronom. et Phys., 14:9 (1966), 489–492 | MR | Zbl
[3] Arkhipov G. I., “Ob osobom ryade v probleme Gilberta–Kamke”, Dokl. AN SSSR, 258:5 (1981), 927–930 | MR
[4] Karatsuba A. A., “Ob odnoi sisteme sravnenii”, Matem. zametki, 19:3 (1976), 389–392 | MR | Zbl
[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1976
[6] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1981 | MR