$k$-snakes as a~generalization of polynomials deviating least from zero under constraints
Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 197-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper establishes existence theorems for $k$-snakes, studies their motion under the variation of a parameter, and presents a differential equation satisfied by the snakes. The results contain, as special cases, corresponding properties of constrained polynomials that deviate least from zero. Bibliography: 15 titles.
@article{IM2_1982_19_1_a11,
     author = {V. V. Kovtunets},
     title = {$k$-snakes as a~generalization of polynomials deviating least from zero under constraints},
     journal = {Izvestiya. Mathematics },
     pages = {197--214},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a11/}
}
TY  - JOUR
AU  - V. V. Kovtunets
TI  - $k$-snakes as a~generalization of polynomials deviating least from zero under constraints
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 197
EP  - 214
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a11/
LA  - en
ID  - IM2_1982_19_1_a11
ER  - 
%0 Journal Article
%A V. V. Kovtunets
%T $k$-snakes as a~generalization of polynomials deviating least from zero under constraints
%J Izvestiya. Mathematics 
%D 1982
%P 197-214
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a11/
%G en
%F IM2_1982_19_1_a11
V. V. Kovtunets. $k$-snakes as a~generalization of polynomials deviating least from zero under constraints. Izvestiya. Mathematics , Tome 19 (1982) no. 1, pp. 197-214. http://geodesic.mathdoc.fr/item/IM2_1982_19_1_a11/

[1] Akhiezer N. I., “Über einige Functionen in gegebenen Intervallen am wenigsten von Null alweichen”, Izv. Kazanskogo fiz.-matem. obsch., 3 (1928), 1–69

[2] Voronovskaya E. V., Metod funktsionalov i ego primeneniya, LEIS, L., 1963

[3] Dzyadyk V. K., “Pro odnu ekstremalnu zadachu”, Dokl. AN URSR, ser. A, 4 (1973), 299–300

[4] Dzyadyk V. K., “O povedenii mnozhestva ekstremalnykh polinomov pri nalichii svyazei”, Voprosy teorii priblizheniya funktsii i ee prilozheniya, Naukova dumka, K., 1977, 61–96

[5] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[6] Zolotarev E. I., “Prilozheniya ellipticheskikh funktsii k voprosu o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya”, Poln. sobr. soch., t. 2, AN SSSR, L., 1932

[7] Zinger M. Ya., Elementy differentsialnoi teorii chebyshevskikh priblizhenii, Nauka, M., 1975 | MR | Zbl

[8] Karlin S., “Representation theorem for positve functions”, J. Math. Mech., 12:4 (1963), 593–618 | MR

[9] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[10] Kovtunets V. V., “Issledovanie mnogochlenov N. I. Akhiezera i ikh obobschenii – 3-uzhei”, Teoriya funktsii i ee prilozheniya, Naukova dumka, K., 1979, 111–120 | MR | Zbl

[11] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[12] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, SPb., 1892 | Zbl

[13] Natanson N. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974

[14] Paszkowski S., The theory of uniform approximation. I: Non-asymptotic theoretical problems, Rozprawy Mat., 26, Warszawa, 1962 | MR | Zbl

[15] Chebyshev P. L., “Teoriya mekhanizmov, izvestnykh pod imenem parallelogrammov”, 1853, Poln. sobr. soch., t. I, AN SSSR, M., 1944, 111–143