Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1982_18_3_a8, author = {T. J\'ozefiak and A. Lascoux and P. Pragacz}, title = {Classes of determinantal varieties associated with symmetric and}, journal = {Izvestiya. Mathematics }, pages = {575--586}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {1982}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/} }
TY - JOUR AU - T. Józefiak AU - A. Lascoux AU - P. Pragacz TI - Classes of determinantal varieties associated with symmetric and JO - Izvestiya. Mathematics PY - 1982 SP - 575 EP - 586 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/ LA - en ID - IM2_1982_18_3_a8 ER -
T. Józefiak; A. Lascoux; P. Pragacz. Classes of determinantal varieties associated with symmetric and. Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 575-586. http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/
[1] Buchsbaum D., Eisenbud D., “Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3”, Amer. J. Math., 99 (1977), 447–485 | DOI | MR | Zbl
[2] Giambelli G. Z., “Risoluzione del problema degli spazi secanti”, Mem. della R. Acc. delle Scienze di Torino, 52 (1902), 171–211 | Zbl
[3] Giambelli G. Z., “Sulle varietá rappresentate coll' annullare determinanti minori contenuti in un determinante simmetrico od emisimmetrico generico di forme”, Atti della R. Ace. delle Scienze di Torino, 41 (1905/06), 102–125
[4] Hochster M., EagonJ. A., “Cohen–Macaulay rings, invariant theory and the generic perfection of determinantal loci”, Amer. J. Math., 93 (1971), 1020–1058 | DOI | MR | Zbl
[5] Józefiak T., “Idelas generated by minors of a symmetric matrix”, Comment. Math. Helvetici, 53 (1978), 595–607 | DOI | MR | Zbl
[6] Józefiak T., Pragacz P., “Ideals generated by Pfaffians”, J. of Algebra, 61 (1979), 189–198 | DOI | MR | Zbl
[7] Józefiak T., Pragacz P., “Syzygies de pfaffiens”, C. R. Acad. Sci. Paris, 287 (1978), 89–91 | MR | Zbl
[8] Kempf G. R., “On the geometry of a theorem of Riemann”, Ann. Math., 98 (1973), 178–185 | DOI | MR | Zbl
[9] Kempf G. R., “On the collapsing of homogeneous bundles”, Inventiones Math., 37 (1976), 229–239 | DOI | MR | Zbl
[10] Kempf G. R., Laksov D., “The determinantal formula of Schubert calculus”, Acta Math., 132 (1974), 153–162 | DOI | MR | Zbl
[11] Kleppe H., Laksov D., “The algebraic structure and deformation of pfaffian schemes”, Algebraic Geometry, Proceedings, 1978, Lecture Notes, 732, Springer-Verlag, 1979 | MR
[12] Knutson D., $\lambda$-brings and the representation theory of the symmetric group, Lecture Notes, 308, Springer-Verlag, 1973 | MR | Zbl
[13] Kutz R. E., “Cohen–Macaulay rings and ideal theory in rings of invariants of algebraic groups”, Trans. Amer. Math. Soc., 194 (1974), 115–129 | DOI | MR | Zbl
[14] Lascoux A., “Puissances extérieures, déterminants et cycles de Schubert”, Bull. Soc. Math. France, 102 (1974), 161–179 | MR | Zbl
[15] Lascoux A., “Calcul de Schur et extension Grassmanniennes des $\lambda$-anneaux”, Combinatoire et représentation du groupe symétrique, Lecture Notes, 579, Springer-Verlag, Strasbourg, 1976 | MR
[16] Lascoux A., “Syzygies des variétés déterminantales”, Advances in Math., 30 (1978), 202–237 | DOI | MR | Zbl
[17] Lascoux A., Syzygies pour les mineurs de matrices symétriques, preprint, 1977
[18] Porteous I. R., “Simple singularities of maps”, Liverpool Sing. Symp., Lecture Notes, 192, Springer-Verlag, 1971, 286–307 | MR