Classes of determinantal varieties associated with symmetric and
Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 575-586.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the authors compute the classes of subschemes of degenerations of a homomorphism of two fibrations in the Chow ring of the base. Bibliography: 18 titles.
@article{IM2_1982_18_3_a8,
     author = {T. J\'ozefiak and A. Lascoux and P. Pragacz},
     title = {Classes of determinantal varieties associated with symmetric and},
     journal = {Izvestiya. Mathematics },
     pages = {575--586},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/}
}
TY  - JOUR
AU  - T. Józefiak
AU  - A. Lascoux
AU  - P. Pragacz
TI  - Classes of determinantal varieties associated with symmetric and
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 575
EP  - 586
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/
LA  - en
ID  - IM2_1982_18_3_a8
ER  - 
%0 Journal Article
%A T. Józefiak
%A A. Lascoux
%A P. Pragacz
%T Classes of determinantal varieties associated with symmetric and
%J Izvestiya. Mathematics 
%D 1982
%P 575-586
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/
%G en
%F IM2_1982_18_3_a8
T. Józefiak; A. Lascoux; P. Pragacz. Classes of determinantal varieties associated with symmetric and. Izvestiya. Mathematics , Tome 18 (1982) no. 3, pp. 575-586. http://geodesic.mathdoc.fr/item/IM2_1982_18_3_a8/

[1] Buchsbaum D., Eisenbud D., “Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3”, Amer. J. Math., 99 (1977), 447–485 | DOI | MR | Zbl

[2] Giambelli G. Z., “Risoluzione del problema degli spazi secanti”, Mem. della R. Acc. delle Scienze di Torino, 52 (1902), 171–211 | Zbl

[3] Giambelli G. Z., “Sulle varietá rappresentate coll' annullare determinanti minori contenuti in un determinante simmetrico od emisimmetrico generico di forme”, Atti della R. Ace. delle Scienze di Torino, 41 (1905/06), 102–125

[4] Hochster M., EagonJ. A., “Cohen–Macaulay rings, invariant theory and the generic perfection of determinantal loci”, Amer. J. Math., 93 (1971), 1020–1058 | DOI | MR | Zbl

[5] Józefiak T., “Idelas generated by minors of a symmetric matrix”, Comment. Math. Helvetici, 53 (1978), 595–607 | DOI | MR | Zbl

[6] Józefiak T., Pragacz P., “Ideals generated by Pfaffians”, J. of Algebra, 61 (1979), 189–198 | DOI | MR | Zbl

[7] Józefiak T., Pragacz P., “Syzygies de pfaffiens”, C. R. Acad. Sci. Paris, 287 (1978), 89–91 | MR | Zbl

[8] Kempf G. R., “On the geometry of a theorem of Riemann”, Ann. Math., 98 (1973), 178–185 | DOI | MR | Zbl

[9] Kempf G. R., “On the collapsing of homogeneous bundles”, Inventiones Math., 37 (1976), 229–239 | DOI | MR | Zbl

[10] Kempf G. R., Laksov D., “The determinantal formula of Schubert calculus”, Acta Math., 132 (1974), 153–162 | DOI | MR | Zbl

[11] Kleppe H., Laksov D., “The algebraic structure and deformation of pfaffian schemes”, Algebraic Geometry, Proceedings, 1978, Lecture Notes, 732, Springer-Verlag, 1979 | MR

[12] Knutson D., $\lambda$-brings and the representation theory of the symmetric group, Lecture Notes, 308, Springer-Verlag, 1973 | MR | Zbl

[13] Kutz R. E., “Cohen–Macaulay rings and ideal theory in rings of invariants of algebraic groups”, Trans. Amer. Math. Soc., 194 (1974), 115–129 | DOI | MR | Zbl

[14] Lascoux A., “Puissances extérieures, déterminants et cycles de Schubert”, Bull. Soc. Math. France, 102 (1974), 161–179 | MR | Zbl

[15] Lascoux A., “Calcul de Schur et extension Grassmanniennes des $\lambda$-anneaux”, Combinatoire et représentation du groupe symétrique, Lecture Notes, 579, Springer-Verlag, Strasbourg, 1976 | MR

[16] Lascoux A., “Syzygies des variétés déterminantales”, Advances in Math., 30 (1978), 202–237 | DOI | MR | Zbl

[17] Lascoux A., Syzygies pour les mineurs de matrices symétriques, preprint, 1977

[18] Porteous I. R., “Simple singularities of maps”, Liverpool Sing. Symp., Lecture Notes, 192, Springer-Verlag, 1971, 286–307 | MR