An~asymptotic formula for the number of solutions of a~nonlinear equation with prime numbers
Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 275-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article an asymptotic formula is determined for the number of representations of a natural number as the sum of the squares of four integers, two of which are prime. Bibliography: 25 titles.
@article{IM2_1982_18_2_a3,
     author = {V. A. Plaksin},
     title = {An~asymptotic formula for the number of solutions of a~nonlinear equation with prime numbers},
     journal = {Izvestiya. Mathematics },
     pages = {275--348},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a3/}
}
TY  - JOUR
AU  - V. A. Plaksin
TI  - An~asymptotic formula for the number of solutions of a~nonlinear equation with prime numbers
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 275
EP  - 348
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a3/
LA  - en
ID  - IM2_1982_18_2_a3
ER  - 
%0 Journal Article
%A V. A. Plaksin
%T An~asymptotic formula for the number of solutions of a~nonlinear equation with prime numbers
%J Izvestiya. Mathematics 
%D 1982
%P 275-348
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a3/
%G en
%F IM2_1982_18_2_a3
V. A. Plaksin. An~asymptotic formula for the number of solutions of a~nonlinear equation with prime numbers. Izvestiya. Mathematics , Tome 18 (1982) no. 2, pp. 275-348. http://geodesic.mathdoc.fr/item/IM2_1982_18_2_a3/

[1] Vinogradov I. M., Izbrannye trudy, AN SSSR, M., 1952 | MR | Zbl

[2] Titchmarsh E. C., “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429 | DOI | Zbl

[3] Linnik Yu. V., “Novye varianty i primeneniya dispersionnogo metoda v binarnykh additivnykh zadachakh”, Dokl. AN SSSR, 137:6 (1961), 1299–1302 | MR | Zbl

[4] Hooley C., “On the representation of a number as the sum of two squares and a prime”, Acta Math., 97 (1957), 189–210 | DOI | MR | Zbl

[5] Linnik Yu. V., “Asimptoticheskaya formula v additivnoi probleme Khardi–Littlvuda”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 629–706 | MR | Zbl

[6] Hardy G. H., Liitlewood J. E., “Some problem of partitio numerorum. III: On the expression of a number as a sum of primes”, Acta Math., 44 (1922), 1–70 | DOI | MR | Zbl

[7] Greaves G., “On the representation of a number in the form $x^2+y^2+p^2+q^2$ where $p$, $q$ are odd primes”, Acta Arithm., 29:3 (1976), 257–274 | MR | Zbl

[8] Hooley C., Applications of seive methods to the theory of numbers, Cambridge University Press, 1976 | MR

[9] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Leningr. univ., L., 1961 | MR | Zbl

[10] Chebyshev P. L., Polnoe sobranie sochinenii, t. I, AN SSSR, M., L., 1946 | MR

[11] Goldfeld M., “On the number of primes $p$ for which $p+a$ has a large prime factor”, Mathematica, 16:31 (1969), 23–28 | MR

[12] Motohashi Y., “A note on the last prime in an arithmetic progression with a prime difference”, Acta Arithm., 17:3 (1970), 283–285 | MR | Zbl

[13] Hooley C., “On the Brun–Titchmarsh theorem”, J. Reine Angew. Math., 255 (1972), 60–79 | MR | Zbl

[14] Hooley C., “On the greatest prime factor of $p+a$”, Mathematika, 20 (1973), 135–143 | MR | Zbl

[15] Vinogradov A. I., “O chislakh s malymi prostymi delitelyami”, Dokl. AN SSSR, 109:4 (1956), 683–686 | Zbl

[16] Selberg A., “On an elementary method in the theory of primes”, Norske Vid. Selsk. Trandhejm, 19:18 (1947), 64–67 | MR | Zbl

[17] Gelfond A. O., Linnik Yu. V., Elementarnye metody analiticheskoi teorii chisel, Fizmatgiz, M., 1962

[18] Davenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1973

[19] Greaves G., “On the divisor-sum problem for binary cubic form”, Acta Arithm., 17:1 (1970), 1–28 | MR | Zbl

[20] Karatsuba A. A., “Ravnomernaya otsenka ostatochnogo chlena v probleme delitelei Dirikhle”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 475–483 | MR | Zbl

[21] Landau E., Vorlesungen über Zahlentheorie, v. 1, S. Hirzel, Leipzig, 1927 | Zbl

[22] Malyshev A. V., O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 65, 1962 | MR | Zbl

[23] Malyshev A. V., “O vzveshennom kolichestve tselykh tochek, lezhaschikh na poverkhnosti vtorogo poryadka”, Zap. nauch. seminarov Leningr. otd. matem. in-ta AN SSSR, I, 1966, 6–83

[24] Vinogradov I. M., Osnovy teorii chisel, 8-e izd., Nauka, M., 1972 | MR

[25] Linnik Yu. V., “Dispersiya delitelei i kvadratichnykh form v progressiyakh i nekotorye binarnye additivnye zadachi”, Dokl. AN SSSR, 120:5 (1958), 960–962 | MR | Zbl