On the classification of arithmetic groups generated by reflections in Lobachevsky spaces
Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 99-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there do not exist discrete arithmetic groups generated by reflections in Lobachevsky spaces if the dimension of the Lobachevsky space is greater than 15 and the degree of the ground field is sufficiently large. Bibliography: 24 titles.
@article{IM2_1982_18_1_a5,
     author = {V. V. Nikulin},
     title = {On the classification of arithmetic groups generated by reflections in {Lobachevsky} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {99--123},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a5/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On the classification of arithmetic groups generated by reflections in Lobachevsky spaces
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 99
EP  - 123
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a5/
LA  - en
ID  - IM2_1982_18_1_a5
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On the classification of arithmetic groups generated by reflections in Lobachevsky spaces
%J Izvestiya. Mathematics 
%D 1982
%P 99-123
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a5/
%G en
%F IM2_1982_18_1_a5
V. V. Nikulin. On the classification of arithmetic groups generated by reflections in Lobachevsky spaces. Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 99-123. http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a5/

[1] Andreev E. M., “O peresechenii ploskostei granei mnogogrannikov s ostrymi uglami”, Matem. zametki, 8:4 (1970), 521–527 | MR | Zbl

[2] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl

[3] Andreev E. M., “O vypuklykh mnogogrannikakh konechnogo ob'ema v prostranstvakh Lobachevskogo”, Matem. sb., 83:2 (1970), 256–260 | MR | Zbl

[4] Arnold V. I., “Indeks osoboi tochki vektornogo polya, neravenstva Petrovskogo–Oleinik i smeshannye struktury Khodzha”, Funkts. analiz i ego prilozheniya, 12:1 (1978), 1–14 | MR

[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[6] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[7] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72:3 (1967), 471–488 | MR | Zbl

[8] Vinberg E. B., “O gruppakh edinits nekotorykh kvadratichnykh form”, Matem. sb., 87:1 (1972), 18–36 | MR | Zbl

[9] Vinberg E. B., Kaplinskaya I. M., “O gruppakh $O_{18,1}(\mathbf{Z})$ i $O_{19,1}(\mathbf{Z})$”, Dokl. AN SSSR, 238:6 (1978), 1273–1275 | MR | Zbl

[10] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi ratsionalnymi koeffitsientami”, Uspekhi matem. nauk, 10:1 (1955), 41–65 | MR

[11] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2 (1978), 85–134 | MR | Zbl

[12] Ehlers F., “Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolated Singularitäten”, Math. Ann., 218 (1975), 127–156 | DOI | MR | Zbl

[13] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 212 pp., (perevod s angliiskogo)

[14] Klee V., “A combinatorial analog of Poincaré duality theorem”, Canad. J. Math., 16 (1964), 517–531 | MR | Zbl

[15] Nikulin V. V., “O faktor-gruppakh grupp avtomorfizmov giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami”, Dokl. AN SSSR, 248:6 (1979), 1307–1309 | MR | Zbl

[16] Nikulin V. V., “Ob arifmeticheskikh gruppakh, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 44 (1980), 637–669 | MR | Zbl

[17] Fekete M., “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Zeitschr, 17 (1923), 228–249 | DOI | MR | Zbl

[18] Dehn M., “Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidishen Geometrie”, Math. Ann., 61 (1905), 561–586 | DOI | MR | Zbl

[19] Sommerville D. M. Y., “The relations connecting the angle-sums and volume of a polytope in space of $n$ dimensions”, Proc. Roy. Soc. Ser. A, 115 (1927), 103–119 | DOI | Zbl

[20] McMullen P., “The numbers of faces of simplicial polytopes”, Israel J. Math., 9:4 (1971), 559–570 | DOI | MR | Zbl

[21] Stanley R., “The upper bound conjecture and Cohen–Macaulay rings”, Studies in Appl. Math., 54:2 (1975), 135–142 | MR | Zbl

[22] Billera L., Lee C., “Sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes”, Bull. Amer. Math. Soc., 2:1 (1980), 181–185 | DOI | MR | Zbl

[23] Takeuchi K., “Arithmetic triangle groups”, J. Math. Soc. Japan, 29:1 (1977), 91–106 | DOI | MR | Zbl

[24] Takeuchi K., “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan, 27 (1975), 600–612 | DOI | MR | Zbl