On~integral inequalities for trigonometric polynomials and their derivatives
Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi^+$ be the set of nondecreasing functions $\varphi$ defined on $(0,\infty)$ which admit a representation $\varphi(u)=\psi(\ln u)$, where the function $\psi$ is convex (below) on $(-\infty,\infty)$. To the class $\Phi^+$ belong, for example, the functions $\ln u$, $\ln^+u$, $u^p$ when $p>0$, and also any function $\varphi$ which is convex on $(0,\infty)$. In this paper it is shown, in particular, that if $\varphi\in\Phi^+$, then for any trigonometric polynomial $T_n$ of order $n$ the following inequality holds for all natural numbers $r$: $$ \int_0^{2\pi}\varphi\bigl(\bigl|T_n^{(r)}(t)|\bigr)\,dt\leqslant\int_0^{2\pi}\varphi\bigl(n^r\bigl|T_n(t)\bigr|\bigr)\,dt. $$ This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund. Bibliography: 16 titles.
@article{IM2_1982_18_1_a0,
     author = {V. V. Arestov},
     title = {On~integral inequalities for trigonometric polynomials and their derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - On~integral inequalities for trigonometric polynomials and their derivatives
JO  - Izvestiya. Mathematics 
PY  - 1982
SP  - 1
EP  - 17
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/
LA  - en
ID  - IM2_1982_18_1_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%T On~integral inequalities for trigonometric polynomials and their derivatives
%J Izvestiya. Mathematics 
%D 1982
%P 1-17
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/
%G en
%F IM2_1982_18_1_a0
V. V. Arestov. On~integral inequalities for trigonometric polynomials and their derivatives. Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/

[1] Bernshtein S. N., Sobranie sochinenii, t. I, II, AN SSSR, M., 1952–1954

[2] Zigmund A., Trigonometricheskie ryady, t. I, II, Mir, M., 1965 | MR

[3] Ivanov V. I., Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh, Matem. zametki, 18, no. 4, 1975 | MR | Zbl

[4] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0

1$”, Matem. sbornik, 98(140):3(11) (1975), 395–415 | MR | Zbl

[5] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948

[6] Akhiezer N. I.,, Lektsii po teorii approksimatsii, OGIZ, M., L., 1947

[7] Stechkin S. B., “K probleme mnozhitelei dlya trigonometricheskikh polinomov”, Dokl. AN SSSR, 75:1 (1950), 165–168 | Zbl

[8] Bernshtein S. N., Ekstremalnye svoistva polinomov, ONTI, M., L., 1937

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[10] Stein E. M., “Functions of exponential type”, Ann. Math. (2), 65 (1957), 582–592 | DOI | MR | Zbl

[11] Mahler K., “On the zeros of the derivative of a polynomial”, Proc. Roy. Soc., London, 264:1317 (1961), 145–154 | DOI | MR | Zbl

[12] Markushevich A. I., Teoriya analiticheskikh funktsii, GITTL, M., L., 1950

[13] Polia G., Sege G., Zadachi i teoremy iz analiza, t. I, II, GITTL, M., 1956

[14] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[15] Bernstein S., Lecons sur les propriétés extremales et lameilleure approximation des fonctions analytiques d'une variable réelle, Paris, 1926

[16] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR