On~integral inequalities for trigonometric polynomials and their derivatives
Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Phi^+$ be the set of nondecreasing functions $\varphi$ defined on $(0,\infty)$ which admit a representation $\varphi(u)=\psi(\ln u)$, where the function $\psi$ is convex (below) on $(-\infty,\infty)$. To the class $\Phi^+$ belong, for example, the functions $\ln u$, $\ln^+u$, $u^p$ when $p>0$, and also any function $\varphi$ which is convex on $(0,\infty)$. In this paper it is shown, in particular, that if $\varphi\in\Phi^+$, then for any trigonometric polynomial $T_n$ of order $n$ the following inequality holds for all natural numbers $r$:
$$
\int_0^{2\pi}\varphi\bigl(\bigl|T_n^{(r)}(t)|\bigr)\,dt\leqslant\int_0^{2\pi}\varphi\bigl(n^r\bigl|T_n(t)\bigr|\bigr)\,dt.
$$
This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund.
Bibliography: 16 titles.
@article{IM2_1982_18_1_a0,
author = {V. V. Arestov},
title = {On~integral inequalities for trigonometric polynomials and their derivatives},
journal = {Izvestiya. Mathematics },
pages = {1--17},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/}
}
V. V. Arestov. On~integral inequalities for trigonometric polynomials and their derivatives. Izvestiya. Mathematics , Tome 18 (1982) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1982_18_1_a0/