On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables
Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 455-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-parameter class of summability methods for multiple Fourier series and Fourier integrals is considered. This class includes the Abel–Poisson method and the Gauss–Weierstrass method. These methods are used to investigate the rate of summability of Fourier series and integrals of differentiable functions. As corollaries, criteria are obtained for harmonicity and polyharmonicity of functions in given domains of a multidimensional Euclidean space. For example, a criterion is obtained for harmonicity and polyharmonicity of a polynomial in $N$ variables. Moreover, the rate of convergence in the $L_p$-metric is studied for singular integrals of the class under discussion for functions in the Nikol'skii class $H_p^\alpha$ ($\alpha>0$, $1\leqslant p\leqslant\infty$). Bibliography: 14 titles.
@article{IM2_1981_17_3_a1,
     author = {B. I. Golubov},
     title = {On the rate of convergence of integrals of {Gauss--Weierstrass} type for functions of several variables},
     journal = {Izvestiya. Mathematics },
     pages = {455--475},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 455
EP  - 475
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/
LA  - en
ID  - IM2_1981_17_3_a1
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables
%J Izvestiya. Mathematics 
%D 1981
%P 455-475
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/
%G en
%F IM2_1981_17_3_a1
B. I. Golubov. On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables. Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 455-475. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[2] Golubov B. I., “O metode summirovaniya tipa Abelya–Puassona kratnykh integralov Fure”, Matem. sb., 108:2 (1979), 229–246 | MR | Zbl

[3] Golubov B. I., “O metode summirovaniya tipa Abelya–Puassona kratnykh ryadov Fure”, Matem. zametki, 27:1 (1980), 49–59 | MR | Zbl

[4] Golubov B. I., “O skhodimosti singulyarnykh integralov tipa Gaussa–Veiershtrassa dlya funktsii mnogikh peremennykh”, Dokl. AN SSSR, 248:5 (1979), 1044–1048 | MR | Zbl

[5] Butzer P. L., Nessel R. J., Fourier analysis and approximation, Volume 1: One-dimensional theory; Pure and Applied Mathematics, 40, Academic Press, New York, 1971 | MR

[6] Shapiro V. L., “Circular summability $C$ of double trigonometric series”, Trans. Amer. Math. Soc., 76:2 (1954), 223–233 | DOI | MR | Zbl

[7] Shapiro V. L., “Generalized Laplacians”, Amer. J. Math., 78:3 (1956), 497–508 | DOI | MR | Zbl

[8] Bochner S., “Theta relations with spherical harmonics”, Proc. Nat. Acad. Sci. USA, 37:12 (1951), 804–808 | DOI | MR | Zbl

[9] Ryekstynsh E. Ya., Asimptoticheskie razlozheniya integralov, t. 2, Zinatne, Riga, 1977

[10] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul., Nauka, M., 1974 | MR

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[12] Baskakov V. A., “O nekotorykh svoistvakh operatorov tipa operatorov Abelya–Puassona”, Matem. zametki, 17:2 (1975), 169–180 | MR | Zbl

[13] Bochner S., “Quasi-analytic functions, Laplace operator, positive kernels”, Ann Math., 51:1 (1950), 68–91 | DOI | MR | Zbl

[14] Polya G., “On the zeros of an integral function represented by Fourier integral”, Messenger Math., 52:12 (1923), 185–188 | Zbl