On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables
Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 455-475
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-parameter class of summability methods for multiple Fourier series and Fourier integrals is considered. This class includes the Abel–Poisson method and the Gauss–Weierstrass method. These methods are used to investigate the rate of summability of Fourier series and integrals of differentiable functions. As corollaries, criteria are obtained for harmonicity and polyharmonicity of functions in given domains of a multidimensional Euclidean space. For example, a criterion is obtained for harmonicity and polyharmonicity of a polynomial in $N$ variables. Moreover, the
rate of convergence in the $L_p$-metric is studied for singular integrals of the class under discussion for functions in the Nikol'skii class $H_p^\alpha$ ($\alpha>0$, $1\leqslant p\leqslant\infty$).
Bibliography: 14 titles.
@article{IM2_1981_17_3_a1,
author = {B. I. Golubov},
title = {On the rate of convergence of integrals of {Gauss--Weierstrass} type for functions of several variables},
journal = {Izvestiya. Mathematics },
pages = {455--475},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/}
}
TY - JOUR AU - B. I. Golubov TI - On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables JO - Izvestiya. Mathematics PY - 1981 SP - 455 EP - 475 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/ LA - en ID - IM2_1981_17_3_a1 ER -
B. I. Golubov. On the rate of convergence of integrals of Gauss--Weierstrass type for functions of several variables. Izvestiya. Mathematics , Tome 17 (1981) no. 3, pp. 455-475. http://geodesic.mathdoc.fr/item/IM2_1981_17_3_a1/