Extension of convergence of quasipolynomials
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 353-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system $\{\exp(i\lambda_nx)\}$, minimal in $L^p(-a,a)$ ($a\infty$, $1\leqslant p\leqslant\infty$), is called a system of extension of $L^p$-convergence if any sequence of linear combinations of this system converging in $L^p(-a,a)$ converges in $L^p$-norm on every finite interval. A complete description of systems of extension of convergence is given in the class of systems $\{\exp(i\lambda_nx)\}$ generated by sequences of zeros of entire functions of the form $$ L(z)=\int_{-a}^a \frac{e^{izt}k(t)}{(a-|t|)^\alpha}\,dt,\quad0\alpha1,\quad\operatorname{var}k(t)\infty,\quad k(\pm a\mp0)\ne0, $$ where $k(t)$ has, in addition, a certain smoothness in a neighborhood of the points $\pm a$. Specifically, for $1$ this property is realized if and only if $\alpha\ne1-1/p$, while for $p=1$ or $\infty$ there is no extension of convergence. This result is applied to the question of bases of exponential functions in $L^p(-a,a)$, $1$. Bibliography: 13 titles.
@article{IM2_1981_17_2_a6,
     author = {A. M. Sedletskii},
     title = {Extension of convergence of quasipolynomials},
     journal = {Izvestiya. Mathematics },
     pages = {353--368},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Extension of convergence of quasipolynomials
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 353
EP  - 368
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/
LA  - en
ID  - IM2_1981_17_2_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Extension of convergence of quasipolynomials
%J Izvestiya. Mathematics 
%D 1981
%P 353-368
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/
%G en
%F IM2_1981_17_2_a6
A. M. Sedletskii. Extension of convergence of quasipolynomials. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 353-368. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/

[1] Sedletskii A. M., “O funktsiyakh, periodicheskikh v srednem”, Izv. AN SSSR. Ser. matem., 34:6 (1970), 1391–1415 | MR | Zbl

[2] Sedletskii A. M., “Periodicheskoe v srednem prodolzhenie i bazisy pokazatelnykh funktsii v $L^p(-\pi,\pi)$”, Matem. zametki, 12:1 (1972), 37–42 | MR

[3] Sedletskii A. M., “O ravnoskhodimosti i ravnosummiruemosti negarmonicheskikh razlozhenii Fure s obychnymi trigonometricheskimi ryadami”, Matem. zametki, 18:1 (1975), 9–17 | MR

[4] Sedletskii A. M., “Ekvivalentnye posledovatelnosti v nekotorykh prostranstvakh funktsii”, Izv. VUZov, matem., 1973, no. 7, 85–91

[5] Trikomi F., Integralnye uravneniya, IL, M., 1960

[6] Kopson E., Asimptoticheskie razlozheniya, Mir, M., 1966

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[8] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[9] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[10] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948

[11] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[12] Funktsionalnyi analiz, SMB, Nauka, M., 1972

[13] Levinson N., Gap and density theorems, Amer. math. soc., N. Y., 1940 | MR | Zbl