Extension of convergence of quasipolynomials
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 353-368

Voir la notice de l'article provenant de la source Math-Net.Ru

The system $\{\exp(i\lambda_nx)\}$, minimal in $L^p(-a,a)$ ($a\infty$, $1\leqslant p\leqslant\infty$), is called a system of extension of $L^p$-convergence if any sequence of linear combinations of this system converging in $L^p(-a,a)$ converges in $L^p$-norm on every finite interval. A complete description of systems of extension of convergence is given in the class of systems $\{\exp(i\lambda_nx)\}$ generated by sequences of zeros of entire functions of the form $$ L(z)=\int_{-a}^a \frac{e^{izt}k(t)}{(a-|t|)^\alpha}\,dt,\quad0\alpha1,\quad\operatorname{var}k(t)\infty,\quad k(\pm a\mp0)\ne0, $$ where $k(t)$ has, in addition, a certain smoothness in a neighborhood of the points $\pm a$. Specifically, for $1$ this property is realized if and only if $\alpha\ne1-1/p$, while for $p=1$ or $\infty$ there is no extension of convergence. This result is applied to the question of bases of exponential functions in $L^p(-a,a)$, $1$. Bibliography: 13 titles.
@article{IM2_1981_17_2_a6,
     author = {A. M. Sedletskii},
     title = {Extension of convergence of quasipolynomials},
     journal = {Izvestiya. Mathematics },
     pages = {353--368},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Extension of convergence of quasipolynomials
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 353
EP  - 368
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/
LA  - en
ID  - IM2_1981_17_2_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Extension of convergence of quasipolynomials
%J Izvestiya. Mathematics 
%D 1981
%P 353-368
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/
%G en
%F IM2_1981_17_2_a6
A. M. Sedletskii. Extension of convergence of quasipolynomials. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 353-368. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a6/