Interpolation problems, nontrivial expansions of zero, and representing systems
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 299-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a convex domain with support function $h(-\varphi)$, and let $\{\lambda_k\}$ be distinct complex numbers. In this paper the author determines when the system $\{e^{\lambda_kz}\}$ is absolutely representing in the space $A(G)$ of functions analytic in $G$, with the topology of uniform convergence on compact sets. In particular he proves the Theorem. {\it Let $L(\lambda)$ be an exponential function with indicator $h(\varphi)$ and simple zeros $\{\lambda_n\}_{n=1}^\infty$. For the system $\{e^{\lambda_kz}\}_{k=1}^\infty$ to be absolutely representing in $A(G)$ it is necessary and sufficient that either of the following two conditions hold}: 1) {\it The system $\{e^{\lambda_kz}\}_{k=1}^\infty$ has a nontrivial expansion of zero in $A(G)$, i.e. $\sum_{n=1}^\infty b_ne^{\lambda_nz}=0$ for every $z\in G$}. \smallskip 2) $L(\lambda)$ is a function of completely regular growth and there exists a function $C(\lambda)$ of class $[1,0]$ such that $$ \varlimsup_{n\to\infty}\left[\frac1{|\lambda_n|}\ln\left|\frac{C(\lambda_n)}{L^{'}(\lambda_n)}\right|+h(\arg\lambda_n)\right]\leqslant0. $$ Bibliography: 16 titles.
@article{IM2_1981_17_2_a3,
     author = {Yu. F. Korobeinik},
     title = {Interpolation problems, nontrivial expansions of zero, and representing systems},
     journal = {Izvestiya. Mathematics },
     pages = {299--337},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Interpolation problems, nontrivial expansions of zero, and representing systems
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 299
EP  - 337
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/
LA  - en
ID  - IM2_1981_17_2_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Interpolation problems, nontrivial expansions of zero, and representing systems
%J Izvestiya. Mathematics 
%D 1981
%P 299-337
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/
%G en
%F IM2_1981_17_2_a3
Yu. F. Korobeinik. Interpolation problems, nontrivial expansions of zero, and representing systems. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 299-337. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/

[1] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[2] Melnik Yu. I., “K voprosu o predstavlenii regulyarnykh funktsii ryadom Dirikhle”, Matem. zametki, 21:5 (1977), 641–651 | MR | Zbl

[3] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97(139):2 (1975), 193–229 | MR | Zbl

[4] Korobeinik Yu. F., “Ob odnoi dvoistvennoi svyazi”, Matematicheskii analiz i ego prilozheniya, t. VII, Rostovskii un-t, 1975, 200–208 | Zbl

[5] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. II. Prilozheniya k $LN$-prostranstvam”, Matem. Sb., 98(140):1 (1975), 3–26 | MR | Zbl

[6] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izvestiya AN SSSR. Seriya matem., 42 (1978), 325–355 | MR | Zbl

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[8] Leontev A. F., “O znacheniyakh tseloi funktsii konechnogo poryadka v zadannykh tochkakh”, Izv. AN SSSR. Ser. matem., 22 (1958), 387–394 | MR

[9] Bratischev A. V., Korobeinik Yu. F., “Kratnaya interpolyatsionnaya zadacha v prostranstve tselykh funktsii zadannogo utochnennogo poryadka”, Izv. AN SSSR. Ser. matem., 40 (1976), 1102–1127 | MR | Zbl

[10] Valiron G., “Sur les solutions des équations différentielles linéaires d'ordre infini a coefficients constants”, Ann. Scient. Ecole norm. super.(3), 46 (1926), 25–53 | MR

[11] Korobeinik Yu. F., “Suschestvovanie analiticheskogo resheniya differentsialnogo uravneniya beskonechnogo poryadka i kharakter ego oblasti analitichnosti”, Matem. sb., 80(122):1 (1969), 52–76 | MR | Zbl

[12] Muggli H., “Differentialgleichungen unendlich hoher Ordnung mit Constanten Koeffitienten”, Comm. Math. Helvetici, 11 (1938), 151–179 | DOI | Zbl

[13] Gelfond A. O., Leontev A. F., “Ob odnom obobschenii ryada Fure”, Matem. sb., 29(71):3 (1951), 477–500 | MR

[14] Korobeinik Yu. F., “Operatornye uravneniya beskonechnogo poryadka s postoyannymi koeffitsientami”, Sib. matem. zh., XVII:3 (1976), 571–585 | MR

[15] Leontev A. F., “Predstavlenie funktsii obobschennymi ryadami Dirikhle”, Uspekhi matem. nauk, XXIV:2(146) (1969), 97–164 | MR

[16] Brown L., Shields A., Zeller K., “On absolutely convergent exponential sums”, Transactions of the American Mathematical Society, 96:1 (1960), 162–183 | DOI | MR | Zbl