Interpolation problems, nontrivial expansions of zero, and representing systems
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 299-337

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a convex domain with support function $h(-\varphi)$, and let $\{\lambda_k\}$ be distinct complex numbers. In this paper the author determines when the system $\{e^{\lambda_kz}\}$ is absolutely representing in the space $A(G)$ of functions analytic in $G$, with the topology of uniform convergence on compact sets. In particular he proves the Theorem. {\it Let $L(\lambda)$ be an exponential function with indicator $h(\varphi)$ and simple zeros $\{\lambda_n\}_{n=1}^\infty$. For the system $\{e^{\lambda_kz}\}_{k=1}^\infty$ to be absolutely representing in $A(G)$ it is necessary and sufficient that either of the following two conditions hold}: 1) {\it The system $\{e^{\lambda_kz}\}_{k=1}^\infty$ has a nontrivial expansion of zero in $A(G)$, i.e. $\sum_{n=1}^\infty b_ne^{\lambda_nz}=0$ for every $z\in G$}. \smallskip 2) $L(\lambda)$ is a function of completely regular growth and there exists a function $C(\lambda)$ of class $[1,0]$ such that $$ \varlimsup_{n\to\infty}\left[\frac1{|\lambda_n|}\ln\left|\frac{C(\lambda_n)}{L^{'}(\lambda_n)}\right|+h(\arg\lambda_n)\right]\leqslant0. $$ Bibliography: 16 titles.
@article{IM2_1981_17_2_a3,
     author = {Yu. F. Korobeinik},
     title = {Interpolation problems, nontrivial expansions of zero, and representing systems},
     journal = {Izvestiya. Mathematics },
     pages = {299--337},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Interpolation problems, nontrivial expansions of zero, and representing systems
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 299
EP  - 337
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/
LA  - en
ID  - IM2_1981_17_2_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Interpolation problems, nontrivial expansions of zero, and representing systems
%J Izvestiya. Mathematics 
%D 1981
%P 299-337
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/
%G en
%F IM2_1981_17_2_a3
Yu. F. Korobeinik. Interpolation problems, nontrivial expansions of zero, and representing systems. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 299-337. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a3/