Multivarifolds and classical multidimensional Plateau problems
Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 271-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author works out a theory of geometric measures – so-called multivarifolds – which are dimensionally homogeneous analogues of de Rham currents and their various manifestations, and which effectively mirror nonhomogeneous films, together with their geometric and topological properties. As an application the classical (multidimensional) Plateau problems are stated and solved. Bibliography: 17 titles.
@article{IM2_1981_17_2_a2,
     author = {D\`ao Trong Thi},
     title = {Multivarifolds and classical multidimensional {Plateau} problems},
     journal = {Izvestiya. Mathematics },
     pages = {271--298},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a2/}
}
TY  - JOUR
AU  - Dào Trong Thi
TI  - Multivarifolds and classical multidimensional Plateau problems
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 271
EP  - 298
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a2/
LA  - en
ID  - IM2_1981_17_2_a2
ER  - 
%0 Journal Article
%A Dào Trong Thi
%T Multivarifolds and classical multidimensional Plateau problems
%J Izvestiya. Mathematics 
%D 1981
%P 271-298
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a2/
%G en
%F IM2_1981_17_2_a2
Dào Trong Thi. Multivarifolds and classical multidimensional Plateau problems. Izvestiya. Mathematics , Tome 17 (1981) no. 2, pp. 271-298. http://geodesic.mathdoc.fr/item/IM2_1981_17_2_a2/

[1] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[2] Federer H., Geometric measure theory, v. 153, Springer, Berlin, 1969 | MR

[3] Federer H., Fleming W. H., “Normal and integral currents”, Ann. Math., 72:3 (1960), 458–520 | DOI | MR | Zbl

[4] Almgren F. J., “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of varying topological type and singularity structure”, Ann. Math., 87:2 (1968), 321–391 | DOI | MR | Zbl

[5] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104:1 (1960), 1–92 | DOI | MR | Zbl

[6] Morrey Ch. B., Multiple integrals in the calculus of variations, v. 130, Springer, Berlin, 1966 | MR | Zbl

[7] Fomenko A. T., “Mnogomernye zadachi Plato na rimanovykh mnogoobraziyakh i ekstraordinarnye teorii gomologii i kogomologii. I”, Trudy seminara po vekt. i tenz. analizu, vyp. 17, 1974, 3–176 | MR | Zbl

[8] Alber S. I., “Topologiya funktsionalnykh mnogoobrazii i variatsionnoe ischislenie v tselom”, Uspekhi matem. nauk, 25:4 (1970), 57–123 | MR

[9] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR

[10] Burbaki N., Obschaya topologiya. Topologicheskie gruppy, chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969 | MR

[11] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[12] Rado T., “On the problem of least area and the problem of Plateau”, Math. Z., 32 (1930), 763–976 | DOI | MR

[13] Douglas J., “Solution of the problem of Plateau”, Trans. Amer. Math. Soc., 33 (1931), 263–321 | DOI | MR | Zbl

[14] Kurant R., Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953

[15] Reifenberg E. R., “An epiperimetric inequality related to the analyticity of minimal surfaces”, Ann. Math., 80:1 (1964), 1–14 | DOI | MR | Zbl

[16] Reifenberg E. R., “On the analyticity of minimal surfaces”, Ann. Math., 80:1 (1964), 15–21 | DOI | MR | Zbl

[17] Fomenko A. T., “Mnogomernaya zadacha Plato v rimanovykh mnogoobraziyakh”, Matem. sb., 89(131):3 (1972), 475–520 | MR