Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1981_17_1_a9, author = {I. V. Demin}, title = {Fano threefolds representable in the form of line bundles}, journal = {Izvestiya. Mathematics }, pages = {219--226}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1981}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/} }
I. V. Demin. Fano threefolds representable in the form of line bundles. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 219-226. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/
[1] Barth W., “Moduli of Vector Bundles on the Projective Plane”, Invent. math., 42 (1977), 63–91 | DOI | MR | Zbl
[2] Hartshorne R., Algebraic geometry, Graduated Textes in Math., 42, Springer-Verlag, 1977 | MR
[3] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[4] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, 1978, 59–157
[5] Kleiman S., “Toward a numerical theory of ampleness”, Ann. Math.(2), 84:2 (1966), 293–344 | DOI | MR | Zbl
[6] Manin Yu. I., “Lektsii o $K$-funktore v algebraicheskoi geometrii”, Uspekhi matem. nauk, 24:5 (1969), 3–86 | MR | Zbl
[7] Schwarzenberger R. L. E., “Vector bundles on algebraic surfaces”, Proc. London math. Soc.(3), 11:44 (1961), 601–622 | DOI | MR | Zbl
[8] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 43 (1979), 922–964 | MR | Zbl
[9] Grothendieck A., “Le groupe de Brauer”, Dix exposés sur la cohomologie des shémasr, North-Holland, Amsterdam, 1968, 46–188 | MR