Fano threefolds representable in the form of line bundles
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 219-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a biregular classification of smooth Fano 3-folds (i.e. varieties with ample anticanonical sheaf) for which there exists a morphism $p\colon V\to S$ onto a smooth rational surface $S$ whose fibers are smooth rational curves. Bibliography: 9 titles.
@article{IM2_1981_17_1_a9,
     author = {I. V. Demin},
     title = {Fano threefolds representable in the form of line bundles},
     journal = {Izvestiya. Mathematics },
     pages = {219--226},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/}
}
TY  - JOUR
AU  - I. V. Demin
TI  - Fano threefolds representable in the form of line bundles
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 219
EP  - 226
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/
LA  - en
ID  - IM2_1981_17_1_a9
ER  - 
%0 Journal Article
%A I. V. Demin
%T Fano threefolds representable in the form of line bundles
%J Izvestiya. Mathematics 
%D 1981
%P 219-226
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/
%G en
%F IM2_1981_17_1_a9
I. V. Demin. Fano threefolds representable in the form of line bundles. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 219-226. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a9/

[1] Barth W., “Moduli of Vector Bundles on the Projective Plane”, Invent. math., 42 (1977), 63–91 | DOI | MR | Zbl

[2] Hartshorne R., Algebraic geometry, Graduated Textes in Math., 42, Springer-Verlag, 1977 | MR

[3] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[4] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, 1978, 59–157

[5] Kleiman S., “Toward a numerical theory of ampleness”, Ann. Math.(2), 84:2 (1966), 293–344 | DOI | MR | Zbl

[6] Manin Yu. I., “Lektsii o $K$-funktore v algebraicheskoi geometrii”, Uspekhi matem. nauk, 24:5 (1969), 3–86 | MR | Zbl

[7] Schwarzenberger R. L. E., “Vector bundles on algebraic surfaces”, Proc. London math. Soc.(3), 11:44 (1961), 601–622 | DOI | MR | Zbl

[8] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 43 (1979), 922–964 | MR | Zbl

[9] Grothendieck A., “Le groupe de Brauer”, Dix exposés sur la cohomologie des shémasr, North-Holland, Amsterdam, 1968, 46–188 | MR