On the group of volume-preserving diffeomorphisms
Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 95-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a manifold with volume element $\omega^n$. For any neighborhood $U\simeq\mathbf R^n$, let $D(U,\omega^n)$ be the group of diffeomorphisms of $X$ that are concentrated in $U$, and in this group let $D^0(U,\omega^n)$ be the component of the identity. We compute the inductive limit of the family $\{D^0(U,\omega^n)\}$ with respect to the natural inclusions $D^0(U,\omega^n)\hookrightarrow D^0(V,\omega^n)$ for $U\subset V$. Bibliography: 15 titles.
@article{IM2_1981_17_1_a4,
     author = {R. S. Ismagilov},
     title = {On the group of volume-preserving diffeomorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {95--127},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a4/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - On the group of volume-preserving diffeomorphisms
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 95
EP  - 127
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a4/
LA  - en
ID  - IM2_1981_17_1_a4
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T On the group of volume-preserving diffeomorphisms
%J Izvestiya. Mathematics 
%D 1981
%P 95-127
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a4/
%G en
%F IM2_1981_17_1_a4
R. S. Ismagilov. On the group of volume-preserving diffeomorphisms. Izvestiya. Mathematics , Tome 17 (1981) no. 1, pp. 95-127. http://geodesic.mathdoc.fr/item/IM2_1981_17_1_a4/

[1] De Ram Zh., Differentsiruemye mnogoobraziya, IIL, M., 1956

[2] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR

[3] Serr Zh.-P., “Amalgamy, derevya i $SL_2$”, Matematika, 18:1 (1974), 3–51 | Zbl

[4] Van Est W. T., “Local and global groups”, Indagationes Mathematika, 24 (1962), 391–425

[5] Van Est W. T., Korthagen Th., “Non-enlargible Lie algebras”, Indagationes Mathematika, 25 (1963), 15–31 | MR

[6] Cartan E., La topologie des groups de Lie, Hermann, Paris, 1936 | Zbl

[7] Banjaga A., “Sur les groups des diffeomorfismes symplectique”, Lecture Notes in Mathematic, 484 (1974), 50–56 | DOI

[8] Fathi A., Yves-Marie Visetti, “Structure des groups des homéomorphismes préservant une mesure sur une variété compact”, C. R. Acad. Sci. Paris Sér. A–B, 284:15 (1977), A849–A852 | MR

[9] Krygin A. B., “Prodolzhenie diffeomorfizmov, sokhranyayuschikh ob'em”, Funkts. analiz i ego prilozheniya, 5:2 (1971), 72–76 | MR | Zbl

[10] Moser J., “On the volume elements of a manifold”, Transections of American Mathematical Society, 120:3 (1965) ; 11, 286–294 | MR | Zbl

[11] Arnold V. I., “Ob odnomernykh kogomologiyakh algebry Li bezdivergentnykh vektornykh polei i o chislakh vrascheniya dinamicheskikh sistem”, Funkts. analiz i ego prilozheniya, 3:4 (1964), 77–78

[12] Palamodov V. P., “Na mnogoobrazii Shteina kompleks Dolbo rasscheplyaetsya v polozhitelnykh razmernostyakh”, Matem. sbornik, 88:2 (1972), 287–315 | MR | Zbl

[13] Ismagilov R. S., “Unitarnye predstavleniya grupp diffeomorfizmov, sokhranyayuschikh ob'em”, Funktsion. analiz i ego prilozheniya, 11:3 (1977), 80–81 | MR

[14] Ismagilov R. S., “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov, sokhranyayuschikh meru”, Funktsionalnyi analiz i ego prilozheniya, 12:3 (1978), 80–81 | MR | Zbl

[15] Ismagilov R. S., “Tsentralnoe rasshirenie gruppy diffeomorfizmov, sokhranyayuschikh ob'em, kak induktivnyi predel grupp diffeomorfizmov koordinatnykh okrestnostei”, Funktsionalnyi analiz i ego prilozheniya, 13:4 (1979), 71–72 | MR | Zbl