Shimura integrals of cusp forms
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies integrals of the form $\int_\alpha^{i\infty}\Phi z^k\,dz$ on the upper half-plane, where $\alpha$ is a rational number, $0\leqslant k\leqslant w$ is integral, and $\Phi$ is a cusp form of weight $w+2$ with respect to some modular group $\Gamma\subset\mathrm{SL}(2,\mathbf Z)$. The main result is that if $\Gamma$ is a congruence subgroup and $\Phi$ is an eigenvector of all the Hecke operators, then all these integrals are representable as linear combinations of two complex numbers with coefficients in some field of algebraic numbers. Bibliography: 13 titles.
@article{IM2_1981_16_3_a5,
     author = {V. V. Shokurov},
     title = {Shimura integrals of cusp forms},
     journal = {Izvestiya. Mathematics },
     pages = {603--646},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Shimura integrals of cusp forms
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 603
EP  - 646
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/
LA  - en
ID  - IM2_1981_16_3_a5
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Shimura integrals of cusp forms
%J Izvestiya. Mathematics 
%D 1981
%P 603-646
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/
%G en
%F IM2_1981_16_3_a5
V. V. Shokurov. Shimura integrals of cusp forms. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/