Shimura integrals of cusp forms
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies integrals of the form $\int_\alpha^{i\infty}\Phi z^k\,dz$ on the upper half-plane, where $\alpha$ is a rational number, $0\leqslant k\leqslant w$ is integral, and $\Phi$ is a cusp form of weight $w+2$ with respect to some modular group $\Gamma\subset\mathrm{SL}(2,\mathbf Z)$. The main result is that if $\Gamma$ is a congruence subgroup and $\Phi$ is an eigenvector of all the Hecke operators, then all these integrals are representable as linear combinations of two complex numbers with coefficients in some field of algebraic numbers. Bibliography: 13 titles.
@article{IM2_1981_16_3_a5,
     author = {V. V. Shokurov},
     title = {Shimura integrals of cusp forms},
     journal = {Izvestiya. Mathematics },
     pages = {603--646},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Shimura integrals of cusp forms
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 603
EP  - 646
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/
LA  - en
ID  - IM2_1981_16_3_a5
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Shimura integrals of cusp forms
%J Izvestiya. Mathematics 
%D 1981
%P 603-646
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/
%G en
%F IM2_1981_16_3_a5
V. V. Shokurov. Shimura integrals of cusp forms. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/

[1] Atkin A., Lehner I., “Hecke operators on $\Gamma_0(N)$”, Math. Annallen, 185:2 (1970), 134–160 | DOI | MR | Zbl

[2] Drinfeld V. G., “Dve teoremy o modulyarnykh krivykh”, Funktsionalnyi analiz i ego prilozheniya, 7:2 (1973), 83–84 | MR

[3] Mazur B., “Courbes elliptiques et symboles modulaires”, Séminaire Bourbaki (24 ème année (1971/1972), Exp. No 414), Springer, Berlin, 1973 | MR

[4] Mazur B., Swinnerton-Dyer H. P. F., On the $p$-adic $L$-series of an elliptic curve, preprint | MR

[5] Manin Yu. I., “Parabolicheskie tochki i dzeta-funktsii modulyarnykh krivykh”, Izv. AN SSSR. Ser. matem., 36 (1972), 19–66 | MR | Zbl

[6] Manin Yu. I., “Periody parabolicheskikh form i $p$-adicheskie ryady Gekke”, Matem. sb., 92:3 (1973), 378–400 | MR

[7] Miyake T., “On automorphic from on $\text{GL}_2$ and Hecke operators”, Ann. of Math., 94 (1971), 174–189 | DOI | MR

[8] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl

[9] Shioda T., “On elliptic modular surfaces”, J. Math. Soc. Japan, 24:1 (1972), 20–59 | MR | Zbl

[10] Shokurov V. V., “Periody parabolicheskikh form i mnogoobraziya Kugi”, Uspekhi matem. nauk, XXX:3(183) (1975), 183–184

[11] Shokurov V. V., “Modulyarnye simvoly proizvolnogo vesa”, Funktsionalnyi analiz i ego prilozheniya, 10:1 (1976), 95–96 | MR | Zbl

[12] Shokurov V. V., “Golomorfnye differentsialnye formy starshei stepeni na modulyarnykh mnogoobraziyakh Kugi”, Matem. sb., 101:1(9) (1976), 131–157 | MR | Zbl

[13] Shokurov V. V., “Izuchenie gomologii mnogoobrazii Kugi”, Izv. AN SSSR. Ser. matem., 44 (1980), 443–464 | MR | Zbl