Shimura integrals of cusp forms
Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies integrals of the form $\int_\alpha^{i\infty}\Phi z^k\,dz$ on the upper half-plane, where $\alpha$ is a rational number, $0\leqslant k\leqslant w$ is integral, and $\Phi$ is a cusp form of weight $w+2$ with respect to some modular group $\Gamma\subset\mathrm{SL}(2,\mathbf Z)$. The main result is that if $\Gamma$ is a congruence subgroup and $\Phi$ is an eigenvector of all the Hecke operators, then all
these integrals are representable as linear combinations of two complex numbers with coefficients in some field of algebraic numbers.
Bibliography: 13 titles.
@article{IM2_1981_16_3_a5,
author = {V. V. Shokurov},
title = {Shimura integrals of cusp forms},
journal = {Izvestiya. Mathematics },
pages = {603--646},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/}
}
V. V. Shokurov. Shimura integrals of cusp forms. Izvestiya. Mathematics , Tome 16 (1981) no. 3, pp. 603-646. http://geodesic.mathdoc.fr/item/IM2_1981_16_3_a5/