The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 373-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a computation of the irregularity of the Fano surface $\mathscr F$ of lines on the double cover $X\to P^3$ branched in a quartic. A tangent bundle theorem is proved for $\mathscr F$, from which it follows that $\mathscr F$ determines $X$ uniquely. It is shown that the Abel–Jacobi map $a\colon\operatorname{Alb}(\mathscr F)\to J_3(X)$ is an isogeny. Bibliography: 7 titles.
@article{IM2_1981_16_2_a6,
     author = {A. S. Tikhomirov},
     title = {The geometry of the {Fano} surface of the double cover of $P^3$ branched in a~quartic},
     journal = {Izvestiya. Mathematics },
     pages = {373--397},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 373
EP  - 397
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/
LA  - en
ID  - IM2_1981_16_2_a6
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic
%J Izvestiya. Mathematics 
%D 1981
%P 373-397
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/
%G en
%F IM2_1981_16_2_a6
A. S. Tikhomirov. The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 373-397. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/

[1] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 | MR | Zbl

[2] Altman A., Kleiman S., “Foundations of theory of Fano schemes”, Compos. math., 34:1 (1977), 3–47 | MR | Zbl

[3] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 12, VINITI AN SSSR, 1979, 59–157 | MR

[4] Hartshorne R., Algebraic geometry, New York, 1977 | MR

[5] Roth L., Semple J. G., Introduction to algebraic geometry, Oxford, 1949 | MR | Zbl

[6] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl

[7] Beauville A., “Varietés de Prym et Jacobiennes intermediaires”, Ann. sci. Ecole norm. super., 10:3 (1977), 309–391 | MR | Zbl