The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 373-397
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a computation of the irregularity of the Fano surface $\mathscr F$ of lines on the double cover $X\to P^3$ branched in a quartic. A tangent bundle theorem is proved for $\mathscr F$, from which it follows that $\mathscr F$ determines $X$ uniquely. It is shown that the Abel–Jacobi map $a\colon\operatorname{Alb}(\mathscr F)\to J_3(X)$ is an isogeny.
Bibliography: 7 titles.
@article{IM2_1981_16_2_a6,
author = {A. S. Tikhomirov},
title = {The geometry of the {Fano} surface of the double cover of $P^3$ branched in a~quartic},
journal = {Izvestiya. Mathematics },
pages = {373--397},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/}
}
A. S. Tikhomirov. The geometry of the Fano surface of the double cover of $P^3$ branched in a~quartic. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 373-397. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a6/