Convolution equations on a finite interval for a class of symbols
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 291-356

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of convolution equations is introduced on a finite interval, which is a generalization of a series of examples encountered in mathematical physics and other fields and for which a certain analogue of the Wiener–Hopf method is developed. As a corollary the Fredholm property is established for general convolution operators on a finite interval with symbols having polynomial growth at infinity in Sobolev spaces of generalized functions. Bibliography: 31 titles.
@article{IM2_1981_16_2_a4,
     author = {B. V. Pal'tsev},
     title = {Convolution equations on a finite interval for a class of symbols},
     journal = {Izvestiya. Mathematics },
     pages = {291--356},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a4/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - Convolution equations on a finite interval for a class of symbols
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 291
EP  - 356
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a4/
LA  - en
ID  - IM2_1981_16_2_a4
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T Convolution equations on a finite interval for a class of symbols
%J Izvestiya. Mathematics 
%D 1981
%P 291-356
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a4/
%G en
%F IM2_1981_16_2_a4
B. V. Pal'tsev. Convolution equations on a finite interval for a class of symbols. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 291-356. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a4/