Tests for the nonsimplicity of factorable groups
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 261-278

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. Suppose that a finite group $G$ is the product of two subgroups $A$ and $B,$ where $B$ is of odd order. Let at least one of the following conditions be satisfied: (a) $A$ is $2$-separable, and $(|A|,|B|)=1$. (b) $A$ is $2$-nilpotent with a $2$-separable derived group, $B$ is nilpotent, and $(|A|,|B|)=1$. (c) $A$ is supersolvable and $B$ is nilpotent. \noindent Then $O(A)$ lies in $O(G)$. Bibliography: 30 titles.
@article{IM2_1981_16_2_a2,
     author = {L. S. Kazarin},
     title = {Tests for the nonsimplicity of factorable groups},
     journal = {Izvestiya. Mathematics },
     pages = {261--278},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a2/}
}
TY  - JOUR
AU  - L. S. Kazarin
TI  - Tests for the nonsimplicity of factorable groups
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 261
EP  - 278
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a2/
LA  - en
ID  - IM2_1981_16_2_a2
ER  - 
%0 Journal Article
%A L. S. Kazarin
%T Tests for the nonsimplicity of factorable groups
%J Izvestiya. Mathematics 
%D 1981
%P 261-278
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a2/
%G en
%F IM2_1981_16_2_a2
L. S. Kazarin. Tests for the nonsimplicity of factorable groups. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 261-278. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a2/