Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1981_16_2_a1, author = {V. D. Golovin}, title = {On the homology theory of analytic sheaves}, journal = {Izvestiya. Mathematics }, pages = {239--260}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {1981}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/} }
V. D. Golovin. On the homology theory of analytic sheaves. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 239-260. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/
[1] Golovin V. D., “Gomologii analiticheskikh puchkov”, Dokl. AN SSSR, 225:1 (1975), 41–43 | MR | Zbl
[2] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961
[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961
[4] Andreotti A., Kas A., “Serre duality on complex spaces”, Atti Accad. naz. Lincei, 50:4 (1971), 397–401 | MR | Zbl
[5] Golovin V. D., “Kriterii in'ektivnosti analiticheskikh puchkov”, Matem. zametki, 18:4 (1975), 589–596 | MR | Zbl
[6] Golovin V. D., “O globalnoi razmernosti puchka rostkov golomorfnykh funktsii”, Dokl. AN SSSR, 223:2 (1975), 273–275 | MR | Zbl
[7] Golovin V. D., “O gomologicheskikh svoistvakh tonkikh puchkov”, Soobscheniya AN GruzSSR, 83:3 (1976), 565–567 | MR | Zbl
[8] Golovin V. D., “Dvoistvennost de Rama–Serra dlya kogerentnykh analiticheskikh puchkov na kompleksnykh prostranstvakh”, Teoriya funktsii, funkts. analiz i ikh prilozh., 25 (1976), 49–56 | MR | Zbl
[9] Aleksandrov P. S., “Obschaya teoriya gomologii”, Uchenye zapiski MGU, 45 (1940), 3–60
[10] Lefshets S., Algebraicheskaya topologiya, IL, M., 1949
[11] Cartan H., Cohomologie des groupes, suite spectrale, faisceaux (Paris, 1950–1951), Séminaire E. N. S
[12] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, 24:5 (1969), 87–140 | MR | Zbl
[13] Ramis J.-P., Ruget G., “Complexe dualisant et théorèmes de dualité en géométrie analytique complexe”, Publ. math. IHES, 38 (1970), 77–91 | MR | Zbl
[14] Andreotti A., Bănică C., “Relative duality on complex spaces”, Rev. roumaine math. pures et appl., 20:9 (1975), 981–1041 ; 21:9 (1976), 1139–1181 | MR | Zbl | MR | Zbl
[15] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[16] Golovin V. D., “Dvoistvennost dlya kogomologii s kompaktnymi nositelyami”, Dokl. AN SSSR, 199:4 (1971), 751–753 | Zbl
[17] Rassloennye prostranstva i ikh prilozheniya, Sbornik perevodov, IL, M., 1958
[18] Bănică C., Stănăsilă O., Metode algebrice in teoria globală a spatiilor complexe, Acad. RSR, Bucuresti, 1974
[19] Bredon G. E., Sheaf theory, Mc Graw Hill, New York, 1967 | MR
[20] Borel A., “The Poincaré duality in generalized manifolds”, Michigan Math. Journ., 4:3 (1957), 227–239 | DOI | MR
[21] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Seriya matem., 35 (1971), 831–843 | Zbl
[22] Kompleksnye prostranstva, Sbornik perevodov, Mir, M., 1965 | MR
[23] Andreotti A., Kas A., “Duality on complex spaces”, Ann. Scuola norm. super, Pisa, 27:2 (1973), 187–263 | MR | Zbl
[24] Alexandroff P., “Untersuchungen über Gestalt und Lage abgeschlössener Mengen beliebiger Dimension”, Ann. of Math., 30 (1928), 101–187 | DOI | MR | Zbl
[25] Roos J.-E., “Sur les foncteurs dérivés de $\underleftarrow\lim$. Applications”, C. R. Acad. Sci. Paris, 252:24 (1961), 3702–3704 | MR | Zbl
[26] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373 | Zbl