On the homology theory of analytic sheaves
Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 239-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homology groups of analytic sheaves constitute a natural tool in the theory of duality on complex spaces. In algebraic geometry, homology theory was worked out back in the fifties by Grothendieck. But the corresponding theory remained undeveloped in complex analytic geometry, although important work has been done in this direction by Ramis and Ruget, and by Andreotti and Kas. Homology sheaves and homology groups of analytic sheaves have been defined by the author in an earlier paper (Dokl. Akad. Nauk SSSR 225, № 1 (1975), 41–43). In the present paper, their basic properties are investigated. In particular, it is shown that there exist spectral sequences relating the homology groups to the $\operatorname{Ext}$ functors and the cohomology groups. For complex manifolds, a Poincare duality is obtained. It is also shown that there are spectral sequences relating the homology groups of analytic sheaves to the Aleksandrov-Chekh homology and the canonical homology defined by Sklyarenko. Bibliography: 26 titles.
@article{IM2_1981_16_2_a1,
     author = {V. D. Golovin},
     title = {On the homology theory of analytic sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {239--260},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/}
}
TY  - JOUR
AU  - V. D. Golovin
TI  - On the homology theory of analytic sheaves
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 239
EP  - 260
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/
LA  - en
ID  - IM2_1981_16_2_a1
ER  - 
%0 Journal Article
%A V. D. Golovin
%T On the homology theory of analytic sheaves
%J Izvestiya. Mathematics 
%D 1981
%P 239-260
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/
%G en
%F IM2_1981_16_2_a1
V. D. Golovin. On the homology theory of analytic sheaves. Izvestiya. Mathematics , Tome 16 (1981) no. 2, pp. 239-260. http://geodesic.mathdoc.fr/item/IM2_1981_16_2_a1/

[1] Golovin V. D., “Gomologii analiticheskikh puchkov”, Dokl. AN SSSR, 225:1 (1975), 41–43 | MR | Zbl

[2] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[4] Andreotti A., Kas A., “Serre duality on complex spaces”, Atti Accad. naz. Lincei, 50:4 (1971), 397–401 | MR | Zbl

[5] Golovin V. D., “Kriterii in'ektivnosti analiticheskikh puchkov”, Matem. zametki, 18:4 (1975), 589–596 | MR | Zbl

[6] Golovin V. D., “O globalnoi razmernosti puchka rostkov golomorfnykh funktsii”, Dokl. AN SSSR, 223:2 (1975), 273–275 | MR | Zbl

[7] Golovin V. D., “O gomologicheskikh svoistvakh tonkikh puchkov”, Soobscheniya AN GruzSSR, 83:3 (1976), 565–567 | MR | Zbl

[8] Golovin V. D., “Dvoistvennost de Rama–Serra dlya kogerentnykh analiticheskikh puchkov na kompleksnykh prostranstvakh”, Teoriya funktsii, funkts. analiz i ikh prilozh., 25 (1976), 49–56 | MR | Zbl

[9] Aleksandrov P. S., “Obschaya teoriya gomologii”, Uchenye zapiski MGU, 45 (1940), 3–60

[10] Lefshets S., Algebraicheskaya topologiya, IL, M., 1949

[11] Cartan H., Cohomologie des groupes, suite spectrale, faisceaux (Paris, 1950–1951), Séminaire E. N. S

[12] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, 24:5 (1969), 87–140 | MR | Zbl

[13] Ramis J.-P., Ruget G., “Complexe dualisant et théorèmes de dualité en géométrie analytique complexe”, Publ. math. IHES, 38 (1970), 77–91 | MR | Zbl

[14] Andreotti A., Bănică C., “Relative duality on complex spaces”, Rev. roumaine math. pures et appl., 20:9 (1975), 981–1041 ; 21:9 (1976), 1139–1181 | MR | Zbl | MR | Zbl

[15] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[16] Golovin V. D., “Dvoistvennost dlya kogomologii s kompaktnymi nositelyami”, Dokl. AN SSSR, 199:4 (1971), 751–753 | Zbl

[17] Rassloennye prostranstva i ikh prilozheniya, Sbornik perevodov, IL, M., 1958

[18] Bănică C., Stănăsilă O., Metode algebrice in teoria globală a spatiilor complexe, Acad. RSR, Bucuresti, 1974

[19] Bredon G. E., Sheaf theory, Mc Graw Hill, New York, 1967 | MR

[20] Borel A., “The Poincaré duality in generalized manifolds”, Michigan Math. Journ., 4:3 (1957), 227–239 | DOI | MR

[21] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Seriya matem., 35 (1971), 831–843 | Zbl

[22] Kompleksnye prostranstva, Sbornik perevodov, Mir, M., 1965 | MR

[23] Andreotti A., Kas A., “Duality on complex spaces”, Ann. Scuola norm. super, Pisa, 27:2 (1973), 187–263 | MR | Zbl

[24] Alexandroff P., “Untersuchungen über Gestalt und Lage abgeschlössener Mengen beliebiger Dimension”, Ann. of Math., 30 (1928), 101–187 | DOI | MR | Zbl

[25] Roos J.-E., “Sur les foncteurs dérivés de $\underleftarrow\lim$. Applications”, C. R. Acad. Sci. Paris, 252:24 (1961), 3702–3704 | MR | Zbl

[26] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373 | Zbl