Excesses of systems of exponential functions
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 191-205

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonnegative sequence $\{\alpha_n\}$ is called an admissible majorant if the condition $|\lambda_n-\mu_n|\leqslant\alpha_n$, where $\{\lambda_n\}$ and $\{\mu_n\}$ are real regular sequences, implies that the systems of functions $\{\exp(i\lambda_nx)\}$ and $\{\exp(i\mu_nx)\}$ have the same excess in the space $L^2(-a,a)$ ($a\infty$). A complete characterization of admissible majorants is given for the class of sequences $\alpha_n\downarrow0$ that have the smoothness property $\alpha_{n+1}\sim\alpha_n$. This is used to establish the definitiveness of the author's criterion for the stability of the excess of a system of exponentials in $L^2$. Bibliography: 10 titles.
@article{IM2_1981_16_1_a9,
     author = {A. M. Sedletskii},
     title = {Excesses of systems of exponential functions},
     journal = {Izvestiya. Mathematics },
     pages = {191--205},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Excesses of systems of exponential functions
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 191
EP  - 205
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/
LA  - en
ID  - IM2_1981_16_1_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Excesses of systems of exponential functions
%J Izvestiya. Mathematics 
%D 1981
%P 191-205
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/
%G en
%F IM2_1981_16_1_a9
A. M. Sedletskii. Excesses of systems of exponential functions. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 191-205. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/