Excesses of systems of exponential functions
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 191-205
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonnegative sequence $\{\alpha_n\}$ is called an admissible majorant if the condition $|\lambda_n-\mu_n|\leqslant\alpha_n$, where $\{\lambda_n\}$ and $\{\mu_n\}$ are real regular sequences, implies that the systems of functions $\{\exp(i\lambda_nx)\}$ and
$\{\exp(i\mu_nx)\}$ have the same excess in the space $L^2(-a,a)$ ($a\infty$). A complete characterization of admissible majorants is given for the class of sequences $\alpha_n\downarrow0$ that have the smoothness property $\alpha_{n+1}\sim\alpha_n$. This is used to establish the definitiveness of the author's criterion for the stability of the excess of a system of exponentials in $L^2$.
Bibliography: 10 titles.
@article{IM2_1981_16_1_a9,
author = {A. M. Sedletskii},
title = {Excesses of systems of exponential functions},
journal = {Izvestiya. Mathematics },
pages = {191--205},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/}
}
A. M. Sedletskii. Excesses of systems of exponential functions. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 191-205. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a9/