On geometric properties of the boundary of a~domain of holomorphy
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the author obtains a description of the Shilov boundary of a convex domain in $\mathbf C^n$. Based on this description, he proves that the metric dimension of the Shilov boundary of a bounded convex domain in $\mathbf C^2$ is not less than two. Bibliography: 15 titles.
@article{IM2_1981_16_1_a2,
     author = {S. N. Bychkov},
     title = {On geometric properties of the boundary of a~domain of holomorphy},
     journal = {Izvestiya. Mathematics },
     pages = {41--54},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/}
}
TY  - JOUR
AU  - S. N. Bychkov
TI  - On geometric properties of the boundary of a~domain of holomorphy
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 41
EP  - 54
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/
LA  - en
ID  - IM2_1981_16_1_a2
ER  - 
%0 Journal Article
%A S. N. Bychkov
%T On geometric properties of the boundary of a~domain of holomorphy
%J Izvestiya. Mathematics 
%D 1981
%P 41-54
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/
%G en
%F IM2_1981_16_1_a2
S. N. Bychkov. On geometric properties of the boundary of a~domain of holomorphy. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 41-54. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/

[1] F. Birtel (ed.), Function algebras, Proceedings of an International Symposium on Function Algebras held at Tulane University, 1965, Scott, Foresman and Co., Chicago, Ill., 1966, problem 3 | MR

[2] Vitushkin A. G., “Ob odnoi zadache V. Rudina”, Dokl. AN SSSR, 213:1 (1973), 14–15 | Zbl

[3] Bychkov S. N., “O topologicheskoi razmernosti suschestvennoi granitsy polinomialno vypuklykh oblastei”, Izv. AN SSSR. Ser. matem., 40 (1976), 463–468 | Zbl

[4] Meyers W. E.,, “Montel algebras on the plane”, Canadian J. Math., 22 (1970), 116–122 | MR | Zbl

[5] Bremermann H., “Die Charakterisierung Rungescher Gebiete durch plurisubharmonische Funktionen”, Math. Ann., 136 (1958), 173–186 | DOI | MR | Zbl

[6] Bremermann H., “On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains”, Trans. Amer. Math. Soc., 91:2 (1959), 246–276 | DOI | MR | Zbl

[7] Pflug P., “Über polynomiale Funktionen auf Holomorphiegebeiten”, Math. Z., 139 (1974), 133–139 | DOI | MR | Zbl

[8] Debiard A., Gaveau B., “Frontiere de Shilov des domaines faiblement pseudoconvexes de $C^n$”, Bull. Sci. Math., 100 (1976), 17–31 | MR | Zbl

[9] Hakim M., Sibony N., “Frontiere de Shilov et spectre de $A(\overline{D})$ pour des domaines faiblement pseudoconvexes”, Comptes Rendus Acad. Sci. Paris, 281 (1975), 959–962 | MR | Zbl

[10] Basener R., “Peak points, barriers and pseudoconvex boundary points”, Proc. Am. Math. Soc., 65 (1977), 89–92 | DOI | MR | Zbl

[11] Wells R. O., “Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold”, Ann. Scuola Norm, super. Pisa, Sci. fis. e mat., 23 (1969), 347–361 | MR | Zbl

[12] Bishop E., “A minimal boundary for function algebras”, Pacif. J. Math., 9:3 (1959), 629–642 | MR | Zbl

[13] Rossi H.,, “The local maximum modulus principle”, Ann. Math., 72 (1960), 1–11 | DOI | MR | Zbl

[14] Tumanov A. E., “Mnozhestvo pika metricheskoi razmernosti 2,5 dlya algebry golomorfnykh funktsii na trekhmernoi sfere v $\mathbf C^2$”, Izv. AN SSSR. Ser. matem., 41 (1977), 370–377 | MR | Zbl

[15] Wegmann H.,, “Die Hausdorfdimension von kartesischen Produktmengen”, J. reine und angew. Math., 234 (1969), 163–171 | MR | Zbl