On geometric properties of the boundary of a~domain of holomorphy
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the author obtains a description of the Shilov boundary of a convex domain in $\mathbf C^n$. Based on this description, he proves that the metric dimension of the Shilov boundary of a bounded convex domain in $\mathbf C^2$ is not less than two. Bibliography: 15 titles.
@article{IM2_1981_16_1_a2,
     author = {S. N. Bychkov},
     title = {On geometric properties of the boundary of a~domain of holomorphy},
     journal = {Izvestiya. Mathematics },
     pages = {41--54},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/}
}
TY  - JOUR
AU  - S. N. Bychkov
TI  - On geometric properties of the boundary of a~domain of holomorphy
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 41
EP  - 54
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/
LA  - en
ID  - IM2_1981_16_1_a2
ER  - 
%0 Journal Article
%A S. N. Bychkov
%T On geometric properties of the boundary of a~domain of holomorphy
%J Izvestiya. Mathematics 
%D 1981
%P 41-54
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/
%G en
%F IM2_1981_16_1_a2
S. N. Bychkov. On geometric properties of the boundary of a~domain of holomorphy. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 41-54. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a2/