A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 21-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that the inequality $$ \prod_{i=1}^k|P(\omega_i)|^{-n+k-1-\varepsilon} $$ has only a finite number of solutions in integral polynomials $P(x)$ for almost all $\overline\omega=(\omega_1,\dots,\omega_k)$. Here $H$ is the coefficient of $P(x)$ largest in absolute value. Sprindzuk's conjecture is thereby proved. Bibliography: 7 titles.
@article{IM2_1981_16_1_a1,
     author = {V. I. Bernik},
     title = {A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {21--40},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
TI  - A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 21
EP  - 40
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/
LA  - en
ID  - IM2_1981_16_1_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%T A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials
%J Izvestiya. Mathematics 
%D 1981
%P 21-40
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/
%G en
%F IM2_1981_16_1_a1
V. I. Bernik. A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 21-40. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/