A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 21-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that the inequality
$$
\prod_{i=1}^k|P(\omega_i)|^{-n+k-1-\varepsilon}
$$
has only a finite number of solutions in integral polynomials $P(x)$ for almost all $\overline\omega=(\omega_1,\dots,\omega_k)$. Here $H$ is the coefficient of $P(x)$ largest in absolute value. Sprindzuk's conjecture is thereby proved.
Bibliography: 7 titles.
@article{IM2_1981_16_1_a1,
author = {V. I. Bernik},
title = {A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials},
journal = {Izvestiya. Mathematics },
pages = {21--40},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/}
}
TY - JOUR AU - V. I. Bernik TI - A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials JO - Izvestiya. Mathematics PY - 1981 SP - 21 EP - 40 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/ LA - en ID - IM2_1981_16_1_a1 ER -
V. I. Bernik. A metric theorem on the simultaneous approximation of a~zero by the values of integral polynomials. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 21-40. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a1/