On the boundedness of the Iwasawa invariant
Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Iwasawa invariant $\mu$ for any algebraic number field is bounded on the space of $\Gamma$-extensions for each prime $l$. Bibliography: 7 titles.
@article{IM2_1981_16_1_a0,
     author = {V. A. Babaitsev},
     title = {On the boundedness of the {Iwasawa} invariant},
     journal = {Izvestiya. Mathematics },
     pages = {1--19},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a0/}
}
TY  - JOUR
AU  - V. A. Babaitsev
TI  - On the boundedness of the Iwasawa invariant
JO  - Izvestiya. Mathematics 
PY  - 1981
SP  - 1
EP  - 19
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a0/
LA  - en
ID  - IM2_1981_16_1_a0
ER  - 
%0 Journal Article
%A V. A. Babaitsev
%T On the boundedness of the Iwasawa invariant
%J Izvestiya. Mathematics 
%D 1981
%P 1-19
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a0/
%G en
%F IM2_1981_16_1_a0
V. A. Babaitsev. On the boundedness of the Iwasawa invariant. Izvestiya. Mathematics , Tome 16 (1981) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/IM2_1981_16_1_a0/

[1] Iwasawa K., “$\mathbf Z_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl

[2] Greenberg R., “The Iwasawa invariants of $\Gamma$-extensions of a fixed number field”, Amer. J. Math., 95:1 (1973), 204–214 | DOI | MR | Zbl

[3] Babaitsev V. A., “O nekotorykh voprosakh teorii G-rasshirenii polei algebraicheskikh chisel. II”, Izv. AN SSSR. Ser. matem., 40 (1976), 715–726

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[5] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[6] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 267–327 | MR

[7] Greenberg R., “On a certain $l$-adic representation”, Inv. math., 21 (1973), 117–124 | DOI | MR | Zbl