The set of all analytically definable sets of natural numbers can be defined analytically
Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 469-500

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves consistency with ZFC of the following assertion: the set of all analytically definable sets $x\subseteq\omega$ is analytically definable. A subset $x$ of $\omega$ is said to be analytically definable if $x$ belongs to one of the classes $\Sigma_n^1$ of the analytic hierarchy. The same holds for $X\subseteq\mathscr P(\omega)$. Thus Tarskii's problem on definability in the theory of types is solved for the case $p=1$. The proof uses the method of forcing, with the aid of almost disjoint sets. Bibliography: 14 titles.
@article{IM2_1980_15_3_a2,
     author = {V. G. Kanovei},
     title = {The set of all analytically definable sets of natural numbers can be defined analytically},
     journal = {Izvestiya. Mathematics },
     pages = {469--500},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - The set of all analytically definable sets of natural numbers can be defined analytically
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 469
EP  - 500
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/
LA  - en
ID  - IM2_1980_15_3_a2
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T The set of all analytically definable sets of natural numbers can be defined analytically
%J Izvestiya. Mathematics 
%D 1980
%P 469-500
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/
%G en
%F IM2_1980_15_3_a2
V. G. Kanovei. The set of all analytically definable sets of natural numbers can be defined analytically. Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 469-500. http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/