Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1980_15_3_a2, author = {V. G. Kanovei}, title = {The set of all analytically definable sets of natural numbers can be defined analytically}, journal = {Izvestiya. Mathematics }, pages = {469--500}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {1980}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/} }
V. G. Kanovei. The set of all analytically definable sets of natural numbers can be defined analytically. Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 469-500. http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/
[1] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[2] Shenfild Dzh., Matematicheskaya logika, Nauka, M., 1975 | MR
[3] Koen P., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969 | MR
[4] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR
[5] Solovay R. M., “A model of set theory in which every set of reals in Lebesque measurable”, Ann. Math., 92:1 (1970), 1–56 | DOI | MR | Zbl
[6] Mathias A. R. D., A survey of recent results in set theory, Stanford University, 1968
[7] Addison J. W., “Some consequences of the axiom of constructibility”, Fund. Math., 46 (1959), 337–357 | MR | Zbl
[8] Jensen R. B., Solovay R. M., “Some applications of almost disjoined sets”, Math. Logic and Found. of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), North-Holland, Amsterdam, 1970, 84–103 | MR
[9] Jensen R. B., “Definable set of minimal degree” (Proc. Internat. Colloq., Jerusalem, 1968), Math. Logic and Found. of Set Theory, 1970, 122–128, North-Holland, Amsterdam | DOI | MR
[10] Delvin K., Aspects of constructibility, Lectures Notes in Math., 354, Berlin, 1973
[11] Jensen R. B., Johnsbraten H., “A new construction of a nonconstructible set of integers”, Fund. Math., 81:4 (1974), 279–290 | MR | Zbl
[12] Kanovei V. G., “O nepustote klassov v aksiomaticheskoi teorii mnozhestv”, Izv. AN SSSR. Ser. matem., 42 (1978), 550–579 | MR | Zbl
[13] Tarski A., “A problem concerning the notion of definability”, J. Symbol. Log., 13:2 (1948), 107–111 | DOI | MR | Zbl
[14] Devlin K., Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984 | MR | Zbl