The set of all analytically definable sets of natural numbers can be defined analytically
Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 469-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves consistency with ZFC of the following assertion: the set of all analytically definable sets $x\subseteq\omega$ is analytically definable. A subset $x$ of $\omega$ is said to be analytically definable if $x$ belongs to one of the classes $\Sigma_n^1$ of the analytic hierarchy. The same holds for $X\subseteq\mathscr P(\omega)$. Thus Tarskii's problem on definability in the theory of types is solved for the case $p=1$. The proof uses the method of forcing, with the aid of almost disjoint sets. Bibliography: 14 titles.
@article{IM2_1980_15_3_a2,
     author = {V. G. Kanovei},
     title = {The set of all analytically definable sets of natural numbers can be defined analytically},
     journal = {Izvestiya. Mathematics },
     pages = {469--500},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - The set of all analytically definable sets of natural numbers can be defined analytically
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 469
EP  - 500
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/
LA  - en
ID  - IM2_1980_15_3_a2
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T The set of all analytically definable sets of natural numbers can be defined analytically
%J Izvestiya. Mathematics 
%D 1980
%P 469-500
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/
%G en
%F IM2_1980_15_3_a2
V. G. Kanovei. The set of all analytically definable sets of natural numbers can be defined analytically. Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 469-500. http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a2/

[1] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[2] Shenfild Dzh., Matematicheskaya logika, Nauka, M., 1975 | MR

[3] Koen P., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969 | MR

[4] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[5] Solovay R. M., “A model of set theory in which every set of reals in Lebesque measurable”, Ann. Math., 92:1 (1970), 1–56 | DOI | MR | Zbl

[6] Mathias A. R. D., A survey of recent results in set theory, Stanford University, 1968

[7] Addison J. W., “Some consequences of the axiom of constructibility”, Fund. Math., 46 (1959), 337–357 | MR | Zbl

[8] Jensen R. B., Solovay R. M., “Some applications of almost disjoined sets”, Math. Logic and Found. of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), North-Holland, Amsterdam, 1970, 84–103 | MR

[9] Jensen R. B., “Definable set of minimal degree” (Proc. Internat. Colloq., Jerusalem, 1968), Math. Logic and Found. of Set Theory, 1970, 122–128, North-Holland, Amsterdam | DOI | MR

[10] Delvin K., Aspects of constructibility, Lectures Notes in Math., 354, Berlin, 1973

[11] Jensen R. B., Johnsbraten H., “A new construction of a nonconstructible set of integers”, Fund. Math., 81:4 (1974), 279–290 | MR | Zbl

[12] Kanovei V. G., “O nepustote klassov v aksiomaticheskoi teorii mnozhestv”, Izv. AN SSSR. Ser. matem., 42 (1978), 550–579 | MR | Zbl

[13] Tarski A., “A problem concerning the notion of definability”, J. Symbol. Log., 13:2 (1948), 107–111 | DOI | MR | Zbl

[14] Devlin K., Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984 | MR | Zbl