Sequential discrimination of hypotheses with control of observations
Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 419-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of sequential discrimination of $N$ hypotheses $\{\theta_i\}$ is considered, using a family of measures $\mathscr F=\{F_\alpha\}$, $\alpha\in\mathfrak A$, defined on a measurable space $(X,\mathscr B)$. For observation at a particular instant of the time sequence one of the measures in $\mathscr F$ is assigned to each hypothesis $\theta_i$, and it is decided to use the results of the preceding observations. For given error probability $\mathbf P_e=\mathbf P(\hat\theta\ne\theta_\text{true})$ in making a decision the author studies the smallest possible average number $\mathbf E\tau$ of observations (in the Bayesian or minimax formulation). Asymptotically optimal results (as $\mathbf P_e\to0$, $N\to\infty$) are obtained for a rather large class of cases. Bibliography: 12 titles.
@article{IM2_1980_15_3_a0,
     author = {M. V. Burnashev},
     title = {Sequential discrimination of hypotheses with control of observations},
     journal = {Izvestiya. Mathematics },
     pages = {419--440},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a0/}
}
TY  - JOUR
AU  - M. V. Burnashev
TI  - Sequential discrimination of hypotheses with control of observations
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 419
EP  - 440
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a0/
LA  - en
ID  - IM2_1980_15_3_a0
ER  - 
%0 Journal Article
%A M. V. Burnashev
%T Sequential discrimination of hypotheses with control of observations
%J Izvestiya. Mathematics 
%D 1980
%P 419-440
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a0/
%G en
%F IM2_1980_15_3_a0
M. V. Burnashev. Sequential discrimination of hypotheses with control of observations. Izvestiya. Mathematics , Tome 15 (1980) no. 3, pp. 419-440. http://geodesic.mathdoc.fr/item/IM2_1980_15_3_a0/

[1] Shiryaev A. N., Statisticheskii posledovatelnyi analiz, Nauka, M., 1976 | MR | Zbl

[2] Burnashev M. V., “Peredacha informatsii po diskretnomu kanalu s obratnoi svyazyu. Sluchainoe vremya peredachi”, Problemy peredachi informatsii, 12:4 (1976), 10–30 | MR | Zbl

[3] Burnashev M. V., “Ob upravlenii protsessom nablyudeniya v zadache posledovatelnogo razlicheniya gipotez”, Dokl. AN SSSR, 230:2 (1977), 281–283

[4] Burnashev M. V., Zigangirov K. Sh., “Ob odnoi zadache intervalnogo otsenivaniya pri upravlenii nablyudeniyami”, Problemy peredachi informatsii, 10:3 (1974), 51–61 | MR | Zbl

[5] Burnashev M. V., Zigangirov K. Sh., “Ob odnoi zadache upravleniya nablyudeniyami”, Problemy peredachi informatsii, 11:3 (1975), 44–52 | MR | Zbl

[6] Chernoff H., “Sequential Analysis and Optimal Design”, Soc. for Industr. and Appl. Math., 1972 | MR

[7] Pinsker M. S., Informatsiya i informatsionnaya ustoichivost sluchainykh velichin i protsessov, Problemy peredachi informatsii, 7, AN SSSR, 1960 | MR

[8] Gallager R., Teoriya informatsii i nadezhnaya svyaz, Sov. radio, M., 1974 | Zbl

[9] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967

[10] Chentsov N. N., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972 | MR | Zbl

[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[12] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl