$L_p$-convergence of~Bieberbach polynomials
Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 349-371
Voir la notice de l'article provenant de la source Math-Net.Ru
The author proves the estimate
$$
\|p_n-\omega\|_{L_p(G)}\leqslant\frac{c_{p,\varepsilon}}{(\ln\ln n)^{\frac18(1-\theta)-\varepsilon}}
$$
where $G\subset\mathbf C$; $p_n(z)\equiv p_n$ are Bieberbach polynomials for the pair $(G,0)$; $\omega(0)=0$, $\omega'(0)=1$, $\omega(z)=\omega\colon G\to\{z;|z|$ is a conformal mapping, $\varepsilon>0$, $p\in[1,\infty)$, $0\theta\equiv\theta(G)$. The boundary $\partial G$ is more general than Lipschitz.
Bibliography: 15 titles.
@article{IM2_1980_15_2_a5,
author = {I. V. Kulikov},
title = {$L_p$-convergence {of~Bieberbach} polynomials},
journal = {Izvestiya. Mathematics },
pages = {349--371},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a5/}
}
I. V. Kulikov. $L_p$-convergence of~Bieberbach polynomials. Izvestiya. Mathematics , Tome 15 (1980) no. 2, pp. 349-371. http://geodesic.mathdoc.fr/item/IM2_1980_15_2_a5/