The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime
Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 145-160
Voir la notice de l'article provenant de la source Math-Net.Ru
For $D=p^m$, with $p$ a fixed odd prime, $D\leqslant x^{3/8-\varepsilon}$ and $(l,D)=1$, the asymptotic formula
$$
\sum_{\substack{n\leqslant x\\n\equiv l\!\!\!\!\pmod D}}\tau_k(n)=\frac{xQ_k(\log x)}{\varphi(D)}+O\biggl(\frac{x^{1-\varkappa}}{\varphi(D)}\biggr),
$$
is proved, where $\tau_k(n)$ is the number of positive integer solutions of $x_1\cdots x_k=n$, $Q_k(z)$ is a polynomial of degree $k-1$ in $z$ with coefficients depending on $k$ and $p$, $\varkappa=\min\{\varepsilon/16,\beta/k^3\}$ with $\beta$ a positive constant depending on $p$, and the constant involved in the order $O$ depends on $k$, $p$ and $\varepsilon$.
The proof relies on an idea of A. A. Karatsuba that permits one to solve this problem by means of a scheme for a ternary additive problem.
Bibliography: 10 titles.
@article{IM2_1980_15_1_a5,
author = {M. M. Petechuk},
title = {The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime},
journal = {Izvestiya. Mathematics },
pages = {145--160},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a5/}
}
TY - JOUR AU - M. M. Petechuk TI - The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime JO - Izvestiya. Mathematics PY - 1980 SP - 145 EP - 160 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a5/ LA - en ID - IM2_1980_15_1_a5 ER -
%0 Journal Article %A M. M. Petechuk %T The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime %J Izvestiya. Mathematics %D 1980 %P 145-160 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a5/ %G en %F IM2_1980_15_1_a5
M. M. Petechuk. The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime. Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 145-160. http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a5/