A~norm pairing in formal modules
Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 25-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pairing of the multiplicative group of a local field (a finite extension of the field of $p$-adic numbers $\mathbf Q_p$) with the group of points of a Lubin–Tate formal group is defined explicitly. The values of the pairing are roots of an isogeny of the formal group. The main properties of this pairing are established: bilinearity, invariance under the choice of a local uniformizing element, and independence of the method of expanding elements into series with respect to this uniformizing element. These properties of the pairing are used to prove that it agrees with the generalized Hilbert norm residue symbol when the field over whose ring of integers the formal group is defined is totally ramified over $\mathbf Q_p$. This yields an explicit expression for the generalized Hilbert symbol on the group of points of the formal group. Bibliography: 12 titles.
@article{IM2_1980_15_1_a1,
     author = {S. V. Vostokov},
     title = {A~norm pairing in formal modules},
     journal = {Izvestiya. Mathematics },
     pages = {25--51},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a1/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - A~norm pairing in formal modules
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 25
EP  - 51
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a1/
LA  - en
ID  - IM2_1980_15_1_a1
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T A~norm pairing in formal modules
%J Izvestiya. Mathematics 
%D 1980
%P 25-51
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a1/
%G en
%F IM2_1980_15_1_a1
S. V. Vostokov. A~norm pairing in formal modules. Izvestiya. Mathematics , Tome 15 (1980) no. 1, pp. 25-51. http://geodesic.mathdoc.fr/item/IM2_1980_15_1_a1/

[1] Hasse H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. II: Reziprozitatsgesetz, Teubner, Leipzig, 1930, 204 | Zbl

[2] Hasse H., “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak{p}$ von $p$”, J. Reine u. Angew. Math., 176 (1936), 174–183 | Zbl

[3] Shafarevich I. R., “Obschii zakon vzaimosvyazi”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl

[4] Lubin J., Tate J., “Formal complex multiplication in local fields”, Ann. Math., 81 (1965) | DOI | MR | Zbl

[5] Iwasawa K., “On explicit formulas for the norm residue symbol”, J. Math. Soc. Japan, 20 (1968), 151–164 | MR

[6] Frohlich A., “Formal groups”, Lect. Notes Math., 74, 1968, 140 | MR

[7] Cartier P., “Groupes de Lubin–Tate généralisés”, Invent. Math., 35 (1976), 273–284 | DOI | MR | Zbl

[8] Coates J., Wiles A., “Explicit reciprocity laws”, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), Astérisque, 41,42, Soc. Math. France, Paris, 1977, 7–17 | MR

[9] Vostokov S. V., “Yavnaya formula sparivaniya v formalnykh modulyakh”, Dokl. AN SSSR, 241:2 (1978), 275–278 | MR | Zbl

[10] Wiles A., “Higher explicit reciprocity laws”, Ann. Math., 167, no. 2, 235–254 | MR | Zbl

[11] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[12] Hasse H., Zahlentheorie, Berlin, 1963 | MR