Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type
Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 441-498
Voir la notice de l'article provenant de la source Math-Net.Ru
For an odd prime $l$ and a cyclotomic $\Gamma$ – $l$-extension $k_\infty/k$ of a field $k$ of $CM$ type, a compact periodic $\Gamma$-module $A_l(k)$, analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module $A_l(k)$. The properties of this scalar product are examined, and certain other duality relations are determined on $A_l(k)$. It is proved that, in a finite $l$-extension $k'/k$ of $CM$ type, the $\mathbf Z_l$-ranks of $A_l(k)$ and $A_l(k')$ are connected by a relation similar to the Hurwitz formula for the genus of a curve.
Bibliography: 7 titles.
@article{IM2_1980_14_3_a0,
author = {L. V. Kuz'min},
title = {Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type},
journal = {Izvestiya. Mathematics },
pages = {441--498},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/}
}
TY - JOUR AU - L. V. Kuz'min TI - Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type JO - Izvestiya. Mathematics PY - 1980 SP - 441 EP - 498 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/ LA - en ID - IM2_1980_14_3_a0 ER -
L. V. Kuz'min. Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 441-498. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/