Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1980_14_3_a0, author = {L. V. Kuz'min}, title = {Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type}, journal = {Izvestiya. Mathematics }, pages = {441--498}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {1980}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/} }
TY - JOUR AU - L. V. Kuz'min TI - Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type JO - Izvestiya. Mathematics PY - 1980 SP - 441 EP - 498 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/ LA - en ID - IM2_1980_14_3_a0 ER -
L. V. Kuz'min. Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 441-498. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/
[1] Shafarevich I. R., $\zeta$-funktsiya, rotaprint, VTs MGU, M., 1969
[2] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 267–327 | MR
[3] Iwasawa K., “On $Z_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl
[4] Greenberg R., “On the Iwasawa invariants of totally real number fields”, Amer. J. Math., 98:1 (1976), 263–284 | DOI | MR | Zbl
[5] Maklein S., Gomologiya, Mir, M., 1966
[6] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[7] Bryumer A., “O novykh rabotakh Ivasavy i Leopoldta”, Matematika, 13:5 (1969), 95–102