Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type
Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 441-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an odd prime $l$ and a cyclotomic $\Gamma$ – $l$-extension $k_\infty/k$ of a field $k$ of $CM$ type, a compact periodic $\Gamma$-module $A_l(k)$, analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module $A_l(k)$. The properties of this scalar product are examined, and certain other duality relations are determined on $A_l(k)$. It is proved that, in a finite $l$-extension $k'/k$ of $CM$ type, the $\mathbf Z_l$-ranks of $A_l(k)$ and $A_l(k')$ are connected by a relation similar to the Hurwitz formula for the genus of a curve. Bibliography: 7 titles.
@article{IM2_1980_14_3_a0,
     author = {L. V. Kuz'min},
     title = {Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type},
     journal = {Izvestiya. Mathematics },
     pages = {441--498},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 441
EP  - 498
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/
LA  - en
ID  - IM2_1980_14_3_a0
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type
%J Izvestiya. Mathematics 
%D 1980
%P 441-498
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/
%G en
%F IM2_1980_14_3_a0
L. V. Kuz'min. Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type. Izvestiya. Mathematics , Tome 14 (1980) no. 3, pp. 441-498. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/

[1] Shafarevich I. R., $\zeta$-funktsiya, rotaprint, VTs MGU, M., 1969

[2] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 267–327 | MR

[3] Iwasawa K., “On $Z_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl

[4] Greenberg R., “On the Iwasawa invariants of totally real number fields”, Amer. J. Math., 98:1 (1976), 263–284 | DOI | MR | Zbl

[5] Maklein S., Gomologiya, Mir, M., 1966

[6] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[7] Bryumer A., “O novykh rabotakh Ivasavy i Leopoldta”, Matematika, 13:5 (1969), 95–102