Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type
Izvestiya. Mathematics, Tome 14 (1980) no. 3, pp. 441-498
Cet article a éte moissonné depuis la source Math-Net.Ru
For an odd prime $l$ and a cyclotomic $\Gamma$ – $l$-extension $k_\infty/k$ of a field $k$ of $CM$ type, a compact periodic $\Gamma$-module $A_l(k)$, analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module $A_l(k)$. The properties of this scalar product are examined, and certain other duality relations are determined on $A_l(k)$. It is proved that, in a finite $l$-extension $k'/k$ of $CM$ type, the $\mathbf Z_l$-ranks of $A_l(k)$ and $A_l(k')$ are connected by a relation similar to the Hurwitz formula for the genus of a curve. Bibliography: 7 titles.
@article{IM2_1980_14_3_a0,
author = {L. V. Kuz'min},
title = {Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type},
journal = {Izvestiya. Mathematics},
pages = {441--498},
year = {1980},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/}
}
L. V. Kuz'min. Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type. Izvestiya. Mathematics, Tome 14 (1980) no. 3, pp. 441-498. http://geodesic.mathdoc.fr/item/IM2_1980_14_3_a0/
[1] Shafarevich I. R., $\zeta$-funktsiya, rotaprint, VTs MGU, M., 1969
[2] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 267–327 | MR
[3] Iwasawa K., “On $Z_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl
[4] Greenberg R., “On the Iwasawa invariants of totally real number fields”, Amer. J. Math., 98:1 (1976), 263–284 | DOI | MR | Zbl
[5] Maklein S., Gomologiya, Mir, M., 1966
[6] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[7] Bryumer A., “O novykh rabotakh Ivasavy i Leopoldta”, Matematika, 13:5 (1969), 95–102