On~algebraic cycles on Abelian varieties.~II
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 383-394
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $I$ be a simple 4-dimensional Abelian variety of the first or second type in Albert's classification (i.e. all simple factors of the $\mathbf R$-algebra $[\operatorname{End}I]\otimes_\mathbf Z\mathbf R$ are isomorphic to $\mathbf R$ or $M_2(\mathbf R)$). In this case the algebra $\bigoplus H^{2p}(I,\mathbf Q)\cap H^{p,p}$ over $\mathbf Q$ is generated by divisor classes. If $\dim I=5$, $\operatorname{End}(I)\overset\sim\longrightarrow\mathbf Z$ and the Hodge group $\mathrm{Hg}(I)$ has type $A_1$ or $A_1\times A_1$, then $\dim_\mathbf QH^4(I,\mathbf Q)\cap H^{2,2}=2$ and the $\mathbf Q$-space $H^4(I,\mathbf Q)\cap H^{2,2}$ is not generated by classes of intersections of divisors.
Bibliography: 6 titles.
@article{IM2_1980_14_2_a9,
author = {S. G. Tankeev},
title = {On~algebraic cycles on {Abelian} {varieties.~II}},
journal = {Izvestiya. Mathematics },
pages = {383--394},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a9/}
}
S. G. Tankeev. On~algebraic cycles on Abelian varieties.~II. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 383-394. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a9/