Embedding theorems for profinite groups
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 367-382

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that the profinite group $G$ is an extension of $A$ by $H$. In this paper the profinite subgroups of the topological group of continuous maps from $H$ to $A$ are investigated. The results obtained are used to prove topological analogues for profinite groups of the Frobenius and Magnus embedding theorems. Moreover, a sufficient condition is formulated for a pro-$p$-group that is an extension of an abelian group by a finitely presented group to be finitely presented, in the language of complete tensor products of abelian pro-$p$-groups; and this condition is used to prove that a finitely generated metabelian pro-$p$-group is a subgroup of a finitely presented metabelian pro-$p$-group. Bibliography: 14 titles.
@article{IM2_1980_14_2_a8,
     author = {V. N. Remeslennikov},
     title = {Embedding theorems for profinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {367--382},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a8/}
}
TY  - JOUR
AU  - V. N. Remeslennikov
TI  - Embedding theorems for profinite groups
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 367
EP  - 382
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a8/
LA  - en
ID  - IM2_1980_14_2_a8
ER  - 
%0 Journal Article
%A V. N. Remeslennikov
%T Embedding theorems for profinite groups
%J Izvestiya. Mathematics 
%D 1980
%P 367-382
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a8/
%G en
%F IM2_1980_14_2_a8
V. N. Remeslennikov. Embedding theorems for profinite groups. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 367-382. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a8/