The solution of the generalized convolution equation
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 317-338
Voir la notice de l'article provenant de la source Math-Net.Ru
The following equation is considered:
$$
\sum_{k=0}^p\int_a^b f^{(k)}(x+t)\,d\sigma_k(t)=0,
$$
where the functions $\sigma_k(t)$ are of bounded variation on $[a,b]$, the function $\sigma_p(t)$ having jumps at the end points. A series of elementary solutions is associated with the solution by a certain rule (RZhMat., 1966, 4B106). The convergence of this series is investigated. The results of Sedletskii (RZhMat., 1971, 6B114) for the case $p=0$ are used.
Bibliography: 5 titles.
@article{IM2_1980_14_2_a5,
author = {A. F. Leont'ev},
title = {The solution of the generalized convolution equation},
journal = {Izvestiya. Mathematics },
pages = {317--338},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/}
}
A. F. Leont'ev. The solution of the generalized convolution equation. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/