The solution of the generalized convolution equation
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 317-338

Voir la notice de l'article provenant de la source Math-Net.Ru

The following equation is considered: $$ \sum_{k=0}^p\int_a^b f^{(k)}(x+t)\,d\sigma_k(t)=0, $$ where the functions $\sigma_k(t)$ are of bounded variation on $[a,b]$, the function $\sigma_p(t)$ having jumps at the end points. A series of elementary solutions is associated with the solution by a certain rule (RZhMat., 1966, 4B106). The convergence of this series is investigated. The results of Sedletskii (RZhMat., 1971, 6B114) for the case $p=0$ are used. Bibliography: 5 titles.
@article{IM2_1980_14_2_a5,
     author = {A. F. Leont'ev},
     title = {The solution of the generalized convolution equation},
     journal = {Izvestiya. Mathematics },
     pages = {317--338},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - The solution of the generalized convolution equation
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 317
EP  - 338
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/
LA  - en
ID  - IM2_1980_14_2_a5
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T The solution of the generalized convolution equation
%J Izvestiya. Mathematics 
%D 1980
%P 317-338
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/
%G en
%F IM2_1980_14_2_a5
A. F. Leont'ev. The solution of the generalized convolution equation. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a5/